这篇文章主要介绍了Java中的坐标系相互转换方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
Java坐标系相互转换
1. WGS-84原始坐标系,一般用国际GPS纪录仪记录下来的经纬度,通过GPS定位拿到的原始经纬度,Google和高德地图定位的的经纬度(国外)都是基于WGS-84坐标系的;
* 但是在国内是不允许直接用WGS84坐标系标注的,必须经过加密后才能使用;
2. GCJ-02坐标系,又名“火星坐标系”,是我国国测局独创的坐标体系,由WGS-84加密而成,在国内,必须至少使用GCJ-02坐标系,
或者使用在GCJ-02加密后再进行加密的坐标系,如百度坐标系。高德和Google在国内都是使用GCJ-02坐标系,可以说,GCJ-02是国内最广泛使用的坐标系;
3. 百度坐标系:bd-09,百度坐标系是在GCJ-02坐标系的基础上再次加密偏移后形成的坐标系,只适用于百度地图。
(目前百度API提供了从其它坐标系转换为百度坐标系的API,但却没有从百度坐标系转为其他坐标系的API)
/**
* 各GPS坐标转换工具类
*/
public class GPSUtil {
public static double pi = 3.1415926535897932384626;
public static double x_pi = 3.14159265358979324 * 3000.0 / 180.0;
public static double a = 6378245.0;
public static double ee = 0.00669342162296594323;
public static double transformLat(double x, double y) {
double ret = -100.0 + 2.0 * x + 3.0 * y + 0.2 * y * y + 0.1 * x * y
+ 0.2 * Math.sqrt(Math.abs(x));
ret += (20.0 * Math.sin(6.0 * x * pi) + 20.0 * Math.sin(2.0 * x * pi)) * 2.0 / 3.0;
ret += (20.0 * Math.sin(y * pi) + 40.0 * Math.sin(y / 3.0 * pi)) * 2.0 / 3.0;
ret += (160.0 * Math.sin(y / 12.0 * pi) + 320 * Math.sin(y * pi / 30.0)) * 2.0 / 3.0;
return ret;
}
public static double transformLon(double x, double y) {
double ret = 300.0 + x + 2.0 * y + 0.1 * x * x + 0.1 * x * y + 0.1
* Math.sqrt(Math.abs(x));
ret += (20.0 * Math.sin(6.0 * x * pi) + 20.0 * Math.sin(2.0 * x * pi)) * 2.0 / 3.0;
ret += (20.0 * Math.sin(x * pi) + 40.0 * Math.sin(x / 3.0 * pi)) * 2.0 / 3.0;
ret += (150.0 * Math.sin(x / 12.0 * pi) + 300.0 * Math.sin(x / 30.0
* pi)) * 2.0 / 3.0;
return ret;
}
public static double[] transform(double lat, double lon) {
if (outOfChina(lat, lon)) {
return new double[]{lat,lon};
}
double dLat = transformLat(lon - 105.0, lat - 35.0);
double dLon = transformLon(lon - 105.0, lat - 35.0);
double radLat = lat / 180.0 * pi;
double magic = Math.sin(radLat);
magic = 1 - ee * magic * magic;
double sqrtMagic = Math.sqrt(magic);
dLat = (dLat * 180.0) / ((a * (1 - ee)) / (magic * sqrtMagic) * pi);
dLon = (dLon * 180.0) / (a / sqrtMagic * Math.cos(radLat) * pi);
double mgLat = lat + dLat;
double mgLon = lon + dLon;
return new double[]{mgLat,mgLon};
}
public static boolean outOfChina(double lat, double lon) {
if (lon < 72.004 || lon > 137.8347)
return true;
if (lat < 0.8293 || lat > 55.8271)
return true;
return false;
}
/**
* 84 to 火星坐标系 (GCJ-02) World Geodetic System ==> Mars Geodetic System
*
* @param lat
* @param lon
* @return
*/
public static double[] gps84_To_Gcj02(double lat, double lon) {
if (outOfChina(lat, lon)) {
return new double[]{lat,lon};
}
double dLat = transformLat(lon - 105.0, lat - 35.0);
double dLon = transformLon(lon - 105.0, lat - 35.0);
double radLat = lat / 180.0 * pi;
double magic = Math.sin(radLat);
magic = 1 - ee * magic * magic;
double sqrtMagic = Math.sqrt(magic);
dLat = (dLat * 180.0) / ((a * (1 - ee)) / (magic * sqrtMagic) * pi);
dLon = (dLon * 180.0) / (a / sqrtMagic * Math.cos(radLat) * pi);
double mgLat = lat + dLat;
double mgLon = lon + dLon;
return new double[]{mgLat, mgLon};
}
/**
* * 火星坐标系 (GCJ-02) to 84 * * @param lon * @param lat * @return
* */
public static double[] gcj02_To_Gps84(double lat, double lon) {
double[] gps = transform(lat, lon);
double lontitude = lon * 2 - gps[1];
double latitude = lat * 2 - gps[0];
return new double[]{latitude, lontitude};
}
/**
* 火星坐标系 (GCJ-02) 与百度坐标系 (BD-09) 的转换算法 将 GCJ-02 坐标转换成 BD-09 坐标
*
* @param lat
* @param lon
*/
public static double[] gcj02_To_Bd09(double lat, double lon) {
double x = lon, y = lat;
double z = Math.sqrt(x * x + y * y) + 0.00002 * Math.sin(y * x_pi);
double theta = Math.atan2(y, x) + 0.000003 * Math.cos(x * x_pi);
double tempLon = z * Math.cos(theta) + 0.0065;
double tempLat = z * Math.sin(theta) + 0.006;
double[] gps = {tempLat,tempLon};
return gps;
}
/**
* * 火星坐标系 (GCJ-02) 与百度坐标系 (BD-09) 的转换算法 * * 将 BD-09 坐标转换成GCJ-02 坐标 * * @param
* bd_lat * @param bd_lon * @return
*/
public static double[] bd09_To_Gcj02(double lat, double lon) {
double x = lon - 0.0065, y = lat - 0.006;
double z = Math.sqrt(x * x + y * y) - 0.00002 * Math.sin(y * x_pi);
double theta = Math.atan2(y, x) - 0.000003 * Math.cos(x * x_pi);
double tempLon = z * Math.cos(theta);
double tempLat = z * Math.sin(theta);
double[] gps = {tempLat,tempLon};
return gps;
}
/**将gps84转为bd09
* @param lat
* @param lon
* @return
*/
public static double[] gps84_To_bd09(double lat,double lon){
double[] gcj02 = gps84_To_Gcj02(lat,lon);
double[] bd09 = gcj02_To_Bd09(gcj02[0],gcj02[1]);
return bd09;
}
public static double[] bd09_To_gps84(double lat,double lon){
double[] gcj02 = bd09_To_Gcj02(lat, lon);
double[] gps84 = gcj02_To_Gps84(gcj02[0], gcj02[1]);
//保留小数点后六位
gps84[0] = retain7(gps84[0]);
gps84[1] = retain7(gps84[1]);
return gps84;
}
/**保留小数点后六位
* @param num
* @return
*/
private static double retain7(double num){
String result = String .format("%.7f", num);
return Double.valueOf(result);
}
}
Java任意两个坐标系转换
这里需要两个坐标系的对应两个点
首先是实体类
@Data
@NoArgsConstructor
@AllArgsConstructor
@Accessors(chain = true)
public class Point {
private double x;
private double y;
private double z;
}
计算工具类
@Component
@NoArgsConstructor
@Slf4j
public class transUtil {
/**
* 获取两点连线与y轴夹角
*
* @param p1 点1
* @param p2 点2
* @return 与y轴夹角(角度)
*/
public double getAngle(Point p1, Point p2) {
double angle = Math.atan2(p2.getX() - p1.getX(), p2.getY() - p1.getY());
return angle * (180 / Math.PI);
}
/**
* 获取缩放比例
*
* @param p1 源点1
* @param b1 目标点1
* @param p2 源点2
* @param b2 目标点2
* @return 缩放比例
*/
public double getScale(Point p1, Point b1, Point p2, Point b2) {
return getLength(b1, b2) / getLength(p1, p2);
}
/**
* 获取两点之间连线的长度
*
* @param p1 点1
* @param p2 点2
* @return 长度
*/
public static double getLength(Point p1, Point p2) {
return Math.sqrt(Math.pow(p2.getX() - p1.getX(), 2) + Math.pow(p2.getY() - p1.getY(), 2));
}
/**
* X方向偏移距离参数
*
* @param p1 源点1
* @param b1 目标点1
* @param rotation 旋转角度
* @param scale 缩放比例
* @return X方向偏移
*/
public double getXTranslation(Point p1, Point b1, double rotation, double scale) {
return (b1.getX() - scale * (p1.getX() * Math.cos(rotation) - p1.getY() * Math.sin(rotation)));
}
/**
* Y方向偏移距离参数
*
* @param p1 源点1
* @param b1 目标点1
* @param rotation 旋转角度
* @param scale 缩放比例
* @return Y方向偏移
*/
public double getYTranslation(Point p1, Point b1, double rotation, double scale) {
return (b1.getY() - scale * (p1.getX() * Math.sin(rotation) + p1.getY() * Math.cos(rotation)));
}
/**
* 转换操作
*
* @param gp 源点
* @param rotation 旋转角度
* @param scale 缩放比例
* @param dx X方向偏移
* @param dy Y方向偏移
* @return 目标点
*/
public Point transformBoePoint(Point gp, double rotation, double scale, double dx, double dy) {
double A = scale * Math.cos(rotation);
double B = scale * Math.sin(rotation);
return new Point(retain6(A * gp.getX() - B * gp.getY() + dx), retain6(B * gp.getX() + A * gp.getY() + dy), 0.0);
}
/**
* 保留小数点后六位
*
* @param num
* @return
*/
public static double retain6(double num) {
String result = String.format("%.6f", num);
return Double.valueOf(result);
}
}
这里用到了lombok的相关,可以去除自行写相关方法
使用:四个点分别是
Point1 Point2(原坐标系两个点) newPoint1 newPoint2(新坐标系对应的两个点) 分别对应Point1 -> newPoint1 Point2 -> newPoint2
//初始化4点
double rotation = Math.toRadians(Math.abs(transUtil .getAngle(Point1 , Point2 ) - transUtil .getAngle(newPoint1 , newPoint2 )));
//获取到转化后的坐标
double scale = transUtil .getScale(newPoint1 , Point1 , newPoint2 , Point2 );
double tx = transUtil .getXTranslation(newPoint1 , Point1 , rotation, scale);
double ty = transUtil .getYTranslation(newPoint1 , Point1 , rotation, scale);
//需要转换的坐标 x,y,z
Point transPoint = new Point(o.getX(), o.getZ(), 0.0);
Point resultPoint = coordinateUtil.transformBoePoint(new Point(o.getX(), o.getZ(), 0.0), rotation, scale, tx, ty);
以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程学习网。
本文标题为:Java 坐标系相互转换方式
基础教程推荐
- 减少 JVM 暂停时间 >1 秒使用 UseConcMarkSweepGC 2022-01-01
- “未找到匹配项"使用 matcher 的 group 方法时 2022-01-01
- FirebaseListAdapter 不推送聊天应用程序的单个项目 - Firebase-Ui 3.1 2022-01-01
- 在 Libgdx 中处理屏幕的正确方法 2022-01-01
- 降序排序:Java Map 2022-01-01
- 设置 bean 时出现 Nullpointerexception 2022-01-01
- 无法使用修饰符“public final"访问 java.util.Ha 2022-01-01
- Java Keytool 导入证书后出错,"keytool error: java.io.FileNotFoundException &拒绝访问" 2022-01-01
- 如何使用 Java 创建 X509 证书? 2022-01-01
- Java:带有char数组的println给出乱码 2022-01-01