python scipy.stats.powerlaw negative exponent(python scipy.stats.powerlaw 负指数)
问题描述
我想为 scipy.stats.powerlaw 例程提供负指数,例如a=-1.5,为了抽取随机样本:
<代码>"""powerlaw.pdf(x, a) = a * x**(a-1)"""从 scipy.stats 导入幂律R = powerlaw.rvs(a, size=100)
为什么需要 > 0,我如何提供负 a 以生成随机样本,以及如何提供归一化系数/变换,即
PDF(x,C,a) = C * x**a
文档在这里
I want to supply a negative exponent for the scipy.stats.powerlaw routine, e.g. a=-1.5, in order to draw random samples:
"""
powerlaw.pdf(x, a) = a * x**(a-1)
"""
from scipy.stats import powerlaw
R = powerlaw.rvs(a, size=100)
Why is a > 0 required, how can I supply a negative a in order to generate the random samples, and how can I supply a normalization coefficient/transform, i.e.
PDF(x,C,a) = C * x**a
The documentation is here
http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.powerlaw.html
Thanks!
EDIT: I should add that I'm trying to replicate IDL's RANDOMP function:
http://idlastro.gsfc.nasa.gov/ftp/pro/math/randomp.pro
The Python package powerlaw can do this. Consider for a>1
a power law distribution with probability density function
f(x) = c * x^(-a)
for x > x_min
and f(x) = 0
otherwise. Here c
is a normalization factor and is determined as
c = (a-1) * x_min^(a-1).
In the example below it is a = 1.5
and x_min = 1.0
and comparing the probability density function estimated from the random sample with the PDF from the expression above gives the expected result.
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as pl
import numpy as np
import powerlaw
a, xmin = 1.5, 1.0
N = 10000
# generates random variates of power law distribution
vrs = powerlaw.Power_Law(xmin=xmin, parameters=[a]).generate_random(N)
# plotting the PDF estimated from variates
bin_min, bin_max = np.min(vrs), np.max(vrs)
bins = 10**(np.linspace(np.log10(bin_min), np.log10(bin_max), 100))
counts, edges = np.histogram(vrs, bins, density=True)
centers = (edges[1:] + edges[:-1])/2.
# plotting the expected PDF
xs = np.linspace(bin_min, bin_max, 100000)
pl.plot(xs, [(a-1)*xmin**(a-1)*x**(-a) for x in xs], color='red')
pl.plot(centers, counts, '.')
pl.xscale('log')
pl.yscale('log')
pl.savefig('powerlaw_variates.png')
returns
这篇关于python scipy.stats.powerlaw 负指数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:python scipy.stats.powerlaw 负指数


基础教程推荐
- 在同一图形上绘制Bokeh的烛台和音量条 2022-01-01
- PermissionError: pip 从 8.1.1 升级到 8.1.2 2022-01-01
- Plotly:如何设置绘图图形的样式,使其不显示缺失日期的间隙? 2022-01-01
- 在Python中从Azure BLOB存储中读取文件 2022-01-01
- 修改列表中的数据帧不起作用 2022-01-01
- PANDA VALUE_COUNTS包含GROUP BY之前的所有值 2022-01-01
- 无法导入 Pytorch [WinError 126] 找不到指定的模块 2022-01-01
- 求两个直方图的卷积 2022-01-01
- 使用大型矩阵时禁止 Pycharm 输出中的自动换行符 2022-01-01
- 包装空间模型 2022-01-01