Panda dataframe conditional .mean() depending on values in certain column( pandas 数据框条件 .mean() 取决于特定列中的值)
问题描述
我正在尝试创建一个新列,该列返回同一 df 中现有列的值的平均值.但是,平均值应根据其他三列中的分组来计算.
I'm trying to create a new column which returns the mean of values from an existing column in the same df. However the mean should be computed based on a grouping in three other columns.
Out[184]:
YEAR daytype hourtype scenario option_value
0 2015 SAT of_h 0 0.134499
1 2015 SUN of_h 1 63.019250
2 2015 WD of_h 2 52.113516
3 2015 WD pk_h 3 43.126513
4 2015 SAT of_h 4 56.431392
当YEAR"、daytype"和hourtype"相似时,我基本上希望有一个新列mean"来计算option value"的平均值.
I basically would like to have a new column 'mean' which compute the mean of "option value", when "YEAR", "daytype", and "hourtype" are similar.
我尝试了以下方法但没有成功...
I tried the following approach but without success ...
In [185]: o2['premium']=o2.groupby(['YEAR', 'daytype', 'hourtype'])['option_cf'].mean()
TypeError: incompatible index of inserted column with frame index
推荐答案
这是一种方法
In [19]: def cust_mean(grp):
....: grp['mean'] = grp['option_value'].mean()
....: return grp
....:
In [20]: o2.groupby(['YEAR', 'daytype', 'hourtype']).apply(cust_mean)
Out[20]:
YEAR daytype hourtype scenario option_value mean
0 2015 SAT of_h 0 0.134499 28.282946
1 2015 SUN of_h 1 63.019250 63.019250
2 2015 WD of_h 2 52.113516 52.113516
3 2015 WD pk_h 3 43.126513 43.126513
4 2015 SAT of_h 4 56.431392 28.282946
那么,你的尝试出了什么问题?
So, what was going wrong with your attempt?
它返回一个与原始数据框形状不同的聚合.
It returns an aggregate with different shape from the original dataframe.
In [21]: o2.groupby(['YEAR', 'daytype', 'hourtype'])['option_value'].mean()
Out[21]:
YEAR daytype hourtype
2015 SAT of_h 28.282946
SUN of_h 63.019250
WD of_h 52.113516
pk_h 43.126513
Name: option_value, dtype: float64
或者使用变换
In [1461]: o2['premium'] = (o2.groupby(['YEAR', 'daytype', 'hourtype'])['option_value']
.transform('mean'))
In [1462]: o2
Out[1462]:
YEAR daytype hourtype scenario option_value premium
0 2015 SAT of_h 0 0.134499 28.282946
1 2015 SUN of_h 1 63.019250 63.019250
2 2015 WD of_h 2 52.113516 52.113516
3 2015 WD pk_h 3 43.126513 43.126513
4 2015 SAT of_h 4 56.431392 28.282946
这篇关于 pandas 数据框条件 .mean() 取决于特定列中的值的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:pandas 数据框条件 .mean() 取决于特定列中的值
基础教程推荐
- Python kivy 入口点 inflateRest2 无法定位 libpng16-16.dll 2022-01-01
- 线程时出现 msgbox 错误,GUI 块 2022-01-01
- 筛选NumPy数组 2022-01-01
- 如何在海运重新绘制中自定义标题和y标签 2022-01-01
- Dask.array.套用_沿_轴:由于额外的元素([1]),使用dask.array的每一行作为另一个函数的输入失败 2022-01-01
- 使用PyInstaller后在Windows中打开可执行文件时出错 2022-01-01
- 在 Python 中,如果我在一个“with"中返回.块,文件还会关闭吗? 2022-01-01
- 用于分类数据的跳跃记号标签 2022-01-01
- 何时使用 os.name、sys.platform 或 platform.system? 2022-01-01
- 如何让 python 脚本监听来自另一个脚本的输入 2022-01-01