在每个第 n 个元素之后插入 Python 列表中的元素

Insert element in Python list after every nth element(在每个第 n 个元素之后插入 Python 列表中的元素)
本文介绍了在每个第 n 个元素之后插入 Python 列表中的元素的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

假设我有一个这样的 Python 列表:

Say I have a Python list like this:

letters = ['a','b','c','d','e','f','g','h','i','j']

我想在每个第 n 个元素之后插入一个x",比如说该列表中的三个字符.结果应该是:

I want to insert an 'x' after every nth element, let's say three characters in that list. The result should be:

letters = ['a','b','c','x','d','e','f','x','g','h','i','x','j']

我知道我可以通过循环和插入来做到这一点.我真正在寻找的是一种 Python 方式,也许是单线?

I understand that I can do that with looping and inserting. What I'm actually looking for is a Pythonish-way, a one-liner maybe?

推荐答案

我有两个一体机.

给定:

>>> letters = ['a','b','c','d','e','f','g','h','i','j']

  1. 使用enumerate获取索引,每3rd个字母添加'x'eg: mod(n, 3) == 2,然后拼接成字符串并list().

  1. Use enumerate to get index, add 'x' every 3rd letter, eg: mod(n, 3) == 2, then concatenate into string and list() it.

>>> list(''.join(l + 'x' * (n % 3 == 2) for n, l in enumerate(letters)))

['a', 'b', 'c', 'x', 'd', 'e', 'f', 'x', 'g', 'h', 'i', 'x', 'j']

但是作为 @sancho.s 指出如果任何元素有多个字母,这将不起作用.

But as @sancho.s points out this doesn't work if any of the elements have more than one letter.

使用嵌套推导来展平列表列表(a),以 3 个为一组进行切片,如果距离末尾小于 3,则添加 'x'列表.

Use nested comprehensions to flatten a list of lists(a), sliced in groups of 3 with 'x' added if less than 3 from end of list.

>>> [x for y in (letters[i:i+3] + ['x'] * (i < len(letters) - 2) for
     i in xrange(0, len(letters), 3)) for x in y]

['a', 'b', 'c', 'x', 'd', 'e', 'f', 'x', 'g', 'h', 'i', 'x', 'j']

(a) [item for subgroup in groups for item in subgroup] 展平一个锯齿状的列表列表.

(a) [item for subgroup in groups for item in subgroup] flattens a jagged list of lists.

这篇关于在每个第 n 个元素之后插入 Python 列表中的元素的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)