Keep unified count during multiprocessing?(在多处理期间保持统一计数?)
问题描述
我有一个 python 程序,它运行蒙特卡罗模拟来寻找概率问题的答案.我正在使用多处理,这里是伪代码
I have a python program that runs a Monte Carlo simulation to find answers to probability questions. I am using multiprocessing and here it is in pseudo code
import multiprocessing
def runmycode(result_queue):
print "Requested..."
while 1==1:
iterations +=1
if "result found (for example)":
result_queue.put("result!")
print "Done"
processs = []
result_queue = multiprocessing.Queue()
for n in range(4): # start 4 processes
process = multiprocessing.Process(target=runmycode, args=[result_queue])
process.start()
processs.append(process)
print "Waiting for result..."
result = result_queue.get() # wait
for process in processs: # then kill them all off
process.terminate()
print "Got result:", result
我想对此进行扩展,以便统一计算已运行的迭代次数.就像如果线程 1 已经运行了 100 次,线程 2 已经运行了 100 次,那么我想总共显示 200 次迭代,作为控制台的打印.我指的是线程进程中的 iterations
变量.如何确保所有线程都添加到同一个变量?我认为使用 iterations
的 Global
版本会起作用,但事实并非如此.
I'd like to extend this so that I can keep a unified count of the number of iterations that have been run. Like if thread 1 has run 100 times and thread 2 has run 100 times then I want to show 200 iterations total, as a print to the console. I am referring to the iterations
variable in the thread process. How can I make sure that ALL threads are adding to the same variable? I thought that using a Global
version of iterations
would work but it does not.
推荐答案
正常的全局变量在进程之间的共享方式与线程之间的共享方式不同.您需要使用流程感知数据结构.对于您的用例,multiprocessing.Value
应该可以正常工作:
Normal global variables are not shared between processes the way they are shared between threads. You need to use a process-aware data structure. For your use-case, a multiprocessing.Value
should work fine:
import multiprocessing
def runmycode(result_queue, iterations):
print("Requested...")
while 1==1: # This is an infinite loop, so I assume you want something else here
with iterations.get_lock(): # Need a lock because incrementing isn't atomic
iterations.value += 1
if "result found (for example)":
result_queue.put("result!")
print("Done")
if __name__ == "__main__":
processs = []
result_queue = multiprocessing.Queue()
iterations = multiprocessing.Value('i', 0)
for n in range(4): # start 4 processes
process = multiprocessing.Process(target=runmycode, args=(result_queue, iterations))
process.start()
processs.append(process)
print("Waiting for result...")
result = result_queue.get() # wait
for process in processs: # then kill them all off
process.terminate()
print("Got result: {}".format(result))
print("Total iterations {}".format(iterations.value))
几点说明:
- 我明确地将
Value
传递给孩子,以保持代码与 Windows 兼容,Windows 无法在父子之间共享读/写全局变量. - 我用锁保护了增量,因为它不是原子操作,并且容易受到竞争条件的影响.
- 我添加了一个
if __name__ == "__main__":
保护,再次帮助提高 Windows 兼容性,并作为一般最佳实践.
- I explicitly passed the
Value
to the children, to keep the code compatible with Windows, which can't share read/write global variables between parent and children. - I protected the increment with a lock, because its not an atomic operation, and is susceptible to race conditions.
- I added an
if __name__ == "__main__":
guard, again to help with Windows compatibility, and just as a general best practice.
这篇关于在多处理期间保持统一计数?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:在多处理期间保持统一计数?
基础教程推荐
- 用于分类数据的跳跃记号标签 2022-01-01
- 何时使用 os.name、sys.platform 或 platform.system? 2022-01-01
- 在 Python 中,如果我在一个“with"中返回.块,文件还会关闭吗? 2022-01-01
- Python kivy 入口点 inflateRest2 无法定位 libpng16-16.dll 2022-01-01
- Dask.array.套用_沿_轴:由于额外的元素([1]),使用dask.array的每一行作为另一个函数的输入失败 2022-01-01
- 如何在海运重新绘制中自定义标题和y标签 2022-01-01
- 使用PyInstaller后在Windows中打开可执行文件时出错 2022-01-01
- 线程时出现 msgbox 错误,GUI 块 2022-01-01
- 筛选NumPy数组 2022-01-01
- 如何让 python 脚本监听来自另一个脚本的输入 2022-01-01