python中的求和矩阵列

sum matrix columns in python(python中的求和矩阵列)
本文介绍了python中的求和矩阵列的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我可以对第零列中的项目求和.但是我在哪里更改代码以求和矩阵中的第 2 列、第 3 列或第 4 列?我很容易被难住.

I can sum the items in column zero fine. But where do I change the code to sum column 2, or 3, or 4 in the matrix? I'm easily stumped.

def main():
    matrix = []

    for i in range(2):
        s = input("Enter a 4-by-4 matrix row " + str(i) + ": ") 
        items = s.split() # Extracts items from the string
        list = [ eval(x) for x in items ] # Convert items to numbers   
        matrix.append(list)

    print("Sum of the elements in column 0 is", sumColumn(matrix))

def sumColumn(m):
    for column in range(len(m[0])):
        total = 0
        for row in range(len(m)):
            total += m[row][column]
        return total

main()

推荐答案

您的代码更改为返回您指定的任何列的总和:

Here is your code changed to return the sum of whatever column you specify:

def sumColumn(m, column):
    total = 0
    for row in range(len(m)):
        total += m[row][column]
    return total

column = 1
print("Sum of the elements in column", column, "is", sumColumn(matrix, column))

这篇关于python中的求和矩阵列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)