如何使用带有多个参数的多处理 pool.map

How to use multiprocessing pool.map with multiple arguments(如何使用带有多个参数的多处理 pool.map)

本文介绍了如何使用带有多个参数的多处理 pool.map的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

在 Python multiprocessing 库中,是pool.map 的变体是否支持多个参数?

In the Python multiprocessing library, is there a variant of pool.map which supports multiple arguments?

import multiprocessing

text = "test"

def harvester(text, case):
    X = case[0]
    text + str(X)

if __name__ == '__main__':
    pool = multiprocessing.Pool(processes=6)
    case = RAW_DATASET
    pool.map(harvester(text, case), case, 1)
    pool.close()
    pool.join()

推荐答案

这个问题的答案取决于版本和情况.J.F.Sebastian.1 它使用 Pool.starmap 方法,它接受一系列参数元组.然后它会自动解包每个元组中的参数并将它们传递给给定的函数:

The answer to this is version- and situation-dependent. The most general answer for recent versions of Python (since 3.3) was first described below by J.F. Sebastian.1 It uses the Pool.starmap method, which accepts a sequence of argument tuples. It then automatically unpacks the arguments from each tuple and passes them to the given function:

import multiprocessing
from itertools import product

def merge_names(a, b):
    return '{} & {}'.format(a, b)

if __name__ == '__main__':
    names = ['Brown', 'Wilson', 'Bartlett', 'Rivera', 'Molloy', 'Opie']
    with multiprocessing.Pool(processes=3) as pool:
        results = pool.starmap(merge_names, product(names, repeat=2))
    print(results)

# Output: ['Brown & Brown', 'Brown & Wilson', 'Brown & Bartlett', ...

对于早期版本的 Python,您需要编写一个辅助函数来显式解包参数.如果你想使用 with,你还需要编写一个包装器来将 Pool 变成一个上下文管理器.(感谢 muon 指点这出来了.)

For earlier versions of Python, you'll need to write a helper function to unpack the arguments explicitly. If you want to use with, you'll also need to write a wrapper to turn Pool into a context manager. (Thanks to muon for pointing this out.)

import multiprocessing
from itertools import product
from contextlib import contextmanager

def merge_names(a, b):
    return '{} & {}'.format(a, b)

def merge_names_unpack(args):
    return merge_names(*args)

@contextmanager
def poolcontext(*args, **kwargs):
    pool = multiprocessing.Pool(*args, **kwargs)
    yield pool
    pool.terminate()

if __name__ == '__main__':
    names = ['Brown', 'Wilson', 'Bartlett', 'Rivera', 'Molloy', 'Opie']
    with poolcontext(processes=3) as pool:
        results = pool.map(merge_names_unpack, product(names, repeat=2))
    print(results)

# Output: ['Brown & Brown', 'Brown & Wilson', 'Brown & Bartlett', ...

在更简单的情况下,使用固定的第二个参数,您也可以使用 partial,但仅限于 Python 2.7+.

In simpler cases, with a fixed second argument, you can also use partial, but only in Python 2.7+.

import multiprocessing
from functools import partial
from contextlib import contextmanager

@contextmanager
def poolcontext(*args, **kwargs):
    pool = multiprocessing.Pool(*args, **kwargs)
    yield pool
    pool.terminate()

def merge_names(a, b):
    return '{} & {}'.format(a, b)

if __name__ == '__main__':
    names = ['Brown', 'Wilson', 'Bartlett', 'Rivera', 'Molloy', 'Opie']
    with poolcontext(processes=3) as pool:
        results = pool.map(partial(merge_names, b='Sons'), names)
    print(results)

# Output: ['Brown & Sons', 'Wilson & Sons', 'Bartlett & Sons', ...

1.这在很大程度上受到了他的回答的启发,而他的回答可能应该被接受.但由于这个卡在顶部,似乎最好为未来的读者改进它.

这篇关于如何使用带有多个参数的多处理 pool.map的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本文标题为:如何使用带有多个参数的多处理 pool.map

基础教程推荐