Shared variable in python#39;s multiprocessing(python多处理中的共享变量)
问题描述
第一个问题是Value和Manager().Value有什么区别?
First question is what is the difference between Value and Manager().Value?
其次,是否可以不使用 Value 共享整数变量?下面是我的示例代码.我想要的是得到一个整数值的字典,而不是值.我所做的只是在这个过程之后改变它.有没有更简单的方法?
Second, is it possible to share integer variable without using Value? Below is my sample code. What I want is getting a dict with a value of integer, not Value. What I did is just change it all after the process. Is there any easier way?
from multiprocessing import Process, Manager
def f(n):
n.value += 1
if __name__ == '__main__':
d = {}
p = []
for i in range(5):
d[i] = Manager().Value('i',0)
p.append(Process(target=f, args=(d[i],)))
p[i].start()
for q in p:
q.join()
for i in d:
d[i] = d[i].value
print d
推荐答案
当你使用 Value
你会得到一个 共享内存中的 ctypes
对象,默认情况下使用 RLock
.当您使用 Manager
你会得到一个 SynManager
控制服务器进程的对象,该服务器进程允许其他进程操作对象值.您可以使用同一个管理器创建多个代理;无需在循环中创建新管理器:
When you use Value
you get a ctypes
object in shared memory that by default is synchronized using RLock
. When you use Manager
you get a SynManager
object that controls a server process which allows object values to be manipulated by other processes. You can create multiple proxies using the same manager; there is no need to create a new manager in your loop:
manager = Manager()
for i in range(5):
new_value = manager.Value('i', 0)
Manager
可以跨计算机共享,而Value
仅限于一台计算机.Value
会更快(运行下面的代码查看),所以我认为你应该使用它,除非你需要支持任意对象或通过网络访问它们.
The Manager
can be shared across computers, while Value
is limited to one computer. Value
will be faster (run the below code to see), so I think you should use that unless you need to support arbitrary objects or access them over a network.
import time
from multiprocessing import Process, Manager, Value
def foo(data, name=''):
print type(data), data.value, name
data.value += 1
if __name__ == "__main__":
manager = Manager()
x = manager.Value('i', 0)
y = Value('i', 0)
for i in range(5):
Process(target=foo, args=(x, 'x')).start()
Process(target=foo, args=(y, 'y')).start()
print 'Before waiting: '
print 'x = {0}'.format(x.value)
print 'y = {0}'.format(y.value)
time.sleep(5.0)
print 'After waiting: '
print 'x = {0}'.format(x.value)
print 'y = {0}'.format(y.value)
总结一下:
- 使用
Manager
创建多个共享对象,包括字典和列表.使用Manager
在网络上的计算机之间共享数据. - 在不需要共享信息时使用
Value
或Array
通过网络和ctypes
中的类型足以满足您的需求需要. Value
比Manager
快.
- Use
Manager
to create multiple shared objects, including dicts and lists. UseManager
to share data across computers on a network. - Use
Value
orArray
when it is not necessary to share information across a network and the types inctypes
are sufficient for your needs. Value
is faster thanManager
.
警告
顺便说一句,如果可能,应避免跨进程/线程共享数据.上面的代码可能会按预期运行,但是会增加执行 foo
所需的时间,事情会变得很奇怪.将上述内容与:
By the way, sharing data across processes/threads should be avoided if possible. The code above will probably run as expected, but increase the time it takes to execute foo
and things will get weird. Compare the above with:
def foo(data, name=''):
print type(data), data.value, name
for j in range(1000):
data.value += 1
您需要一个 Lock
才能使其正常工作.
You'll need a Lock
to make this work correctly.
我对这一切并不是特别了解,所以也许其他人会来提供更多见解.我想我会提供一个答案,因为这个问题没有引起注意.希望对您有所帮助.
I am not especially knowledgable about all of this, so maybe someone else will come along and offer more insight. I figured I would contribute an answer since the question was not getting attention. Hope that helps a little.
这篇关于python多处理中的共享变量的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:python多处理中的共享变量
基础教程推荐
- Dask.array.套用_沿_轴:由于额外的元素([1]),使用dask.array的每一行作为另一个函数的输入失败 2022-01-01
- 筛选NumPy数组 2022-01-01
- Python kivy 入口点 inflateRest2 无法定位 libpng16-16.dll 2022-01-01
- 使用PyInstaller后在Windows中打开可执行文件时出错 2022-01-01
- 何时使用 os.name、sys.platform 或 platform.system? 2022-01-01
- 如何让 python 脚本监听来自另一个脚本的输入 2022-01-01
- 线程时出现 msgbox 错误,GUI 块 2022-01-01
- 在 Python 中,如果我在一个“with"中返回.块,文件还会关闭吗? 2022-01-01
- 如何在海运重新绘制中自定义标题和y标签 2022-01-01
- 用于分类数据的跳跃记号标签 2022-01-01