Boto3 CloudFront Object Usage Count(Boto3 CloudFront对象使用计数)
本文介绍了Boto3 CloudFront对象使用计数的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
希望统计CloudFront Dist中的所有对象分别被击中的次数,以便我可以生成Excel表来跟踪使用情况统计数据。我一直在浏览CloudFront的boto3文档,但我还不能确定在哪里可以访问到这些信息。我看到AWS CloudFront控制台会生成一个"热门对象"报告。我不确定是否有人知道如何获取AWS在boto3中为该报告生成的数字?
如果无法通过Boto3访问,是否有我应该改用的AWS CLI命令?
更新:
以下是我最终使用的伪代码,希望这是其他人的起点:
import boto3
import gzip
from datetime import datetime, date, timedelta
import shutil
from xlwt import Workbook
def analyze(timeInterval):
"""
analyze usage data in cloudfront
:param domain:
:param id:
:param password:
:return: usage data
"""
outputList = []
outputDict = {}
s3 = boto3.resource('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=PASSWORD)
data = s3.Bucket(AWS_STORAGE_BUCKET_NAME)
count = 0
currentDatetime = str(datetime.now()).split(' ')
currentDatetime = currentDatetime[0].split('-')
currentdatetimeYear = int(currentDatetime[0])
currentdatetimeMonth = int(currentDatetime[1])
currentdatetimeDay = int(currentDatetime[2])
currentDatetime = date(year=currentdatetimeYear, month=currentdatetimeMonth, day=currentdatetimeDay)
# create excel workbook/sheet that we'll save results to
wb = Workbook()
sheet1 = wb.add_sheet('Log Results By URL')
sheet1.write(0, 1, 'File')
sheet1.write(0, 2, 'Total Hit Count')
sheet1.write(0, 3, 'Total Byte Count')
for item in data.objects.all():
count += 1
# print(count, '
', item)
# print(item.key)
datetimeRef = str(item.key).replace(CLOUDFRONT_IDENTIFIER+'.', '')
datetimeRef = datetimeRef.split('.')
datetimeRef = datetimeRef[0]
datetimeRef = str(datetimeRef[:-3]).split('-')
datetimeRefYear = int(datetimeRef[0])
datetimeRefMonth = int(datetimeRef[1])
datetimeRefDay = int(datetimeRef[2])
datetimeRef = date(year=datetimeRefYear, month=datetimeRefMonth, day=datetimeRefDay)
# print('comparing', datetimeRef - timedelta(days=1), currentDatetime)
if timeInterval == 'daily':
if datetimeRef > currentDatetime - timedelta(days=1):
pass
else:
# file not within datetime restrictions, don't do stuff
continue
elif timeInterval == 'weekly':
if datetimeRef > currentDatetime - timedelta(days=7):
pass
else:
# file not within datetime restrictions, don't do stuff
continue
elif timeInterval == 'monthly':
if datetimeRef > currentDatetime - timedelta(weeks=4):
pass
else:
# file not within datetime restrictions, don't do stuff
continue
elif timeInterval == 'yearly':
if datetimeRef > currentDatetime - timedelta(weeks=52):
pass
else:
# file not within datetime restrictions, don't do stuff
continue
print('datetimeRef', datetimeRef)
print('currentDatetime', currentDatetime)
print('Analyzing File:', item.key)
# download the file
s3.Bucket(AWS_STORAGE_BUCKET_NAME).download_file(item.key, 'logFile.gz')
# unzip the file
with gzip.open('logFile.gz', 'rb') as f_in:
with open('logFile.txt', 'wb') as f_out:
shutil.copyfileobj(f_in, f_out)
# read the text file and add contents to a list
with open('logFile.txt', 'r') as f:
lines = f.readlines()
localcount = -1
for line in lines:
localcount += 1
if localcount < 2:
continue
else:
outputList.append(line)
# print(outputList)
# iterate through the data collecting hit counts and byte size
for dataline in outputList:
data = dataline.split(' ')
# print(data)
if outputDict.get(data[7]) is None:
outputDict[data[7]] = {'count': 1, 'byteCount': int(data[3])}
else:
td = outputDict[data[7]]
outputDict[data[7]] = {'count': int(td['count']) + 1, 'byteCount': int(td['byteCount']) + int(data[3])}
# print(outputDict)
# iterate through the result dictionary and write to the excel sheet
outputDictKeys = outputDict.keys()
count = 1
for outputDictKey in outputDictKeys:
sheet1.write(count, 1, str(outputDictKey))
sheet1.write(count, 2, outputDict[outputDictKey]['count'])
sheet1.write(count, 3, outputDict[outputDictKey]['byteCount'])
count += 1
safeDateTime = str(datetime.now()).replace(':', '.')
# save the workbook
wb.save(str(timeInterval)+str('_Log_Result_'+str(safeDateTime)) + '.xls')
if __name__ == '__main__':
analyze('daily')
推荐答案
发件人Configuring and Using Standard Logs (Access Logs) - Amazon CloudFront:
您可以将CloudFront配置为创建包含有关CloudFront收到的每个用户请求的详细信息的日志文件。这些日志称为标准日志,也称为访问日志。这些标准日志可用于Web和RTMP分发。如果启用标准日志,您还可以指定希望CloudFront保存文件的Amazon S3存储桶。
日志文件可能非常大,但您可以Query Amazon CloudFront Logs using Amazon Athena。
这篇关于Boto3 CloudFront对象使用计数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
沃梦达教程
本文标题为:Boto3 CloudFront对象使用计数
基础教程推荐
猜你喜欢
- 使用Python匹配Stata加权xtil命令的确定方法? 2022-01-01
- 症状类型错误:无法确定关系的真值 2022-01-01
- 使用 Google App Engine (Python) 将文件上传到 Google Cloud Storage 2022-01-01
- 哪些 Python 包提供独立的事件系统? 2022-01-01
- 如何在 Python 中检测文件是否为二进制(非文本)文 2022-01-01
- 合并具有多索引的两个数据帧 2022-01-01
- 使 Python 脚本在 Windows 上运行而不指定“.py";延期 2022-01-01
- 将 YAML 文件转换为 python dict 2022-01-01
- Python 的 List 是如何实现的? 2022-01-01
- 如何在Python中绘制多元函数? 2022-01-01