Adding GeoJSON contours as layers on Plotly Density_Mapbox(将GeoJSON等高线添加为Ploly Density_Mapbox上的图层)
本文介绍了将GeoJSON等高线添加为Ploly Density_Mapbox上的图层的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我想在plotly
density_mapbox
地图上添加天气等值线,但不确定必要的步骤。
首先,我创建了matplotlib
等值线图以可视化数据。
然后,我使用geojsoncontour
从所述等高线的matplotlib
等值线图创建了geojson
文件。
我现在想做的是,将等高线绘制在与density_mapbox
相同的地图上。
geojson
和包含数据的.csv文件here。
关于.csv文件,‘Rand_Data’是进入density_mapbox
绘图的数据,‘Rain_in’是用于生成等高线的数据。
数据链接:https://github.com/jkiefn1/Contours_and_plotly
创建映射框:
# Create the static figure
fig = px.density_mapbox(df
,lat='lat'
,lon='long'
,z='Rand_Data'
,hover_data={
'lat':True # remove from hover data
,'long':True # remove from hover data
,col:True
}
,center=dict(lat=38.5, lon=-96)
,zoom=3
,radius=30
,opacity=0.5
,mapbox_style='open-street-map'
,color_continuous_scale='inferno'
)
fig.show()
创建matplotlib等高线并生成Geojson文件
# Load in the DataFrame
path = r'/Users/joe_kiefner/Desktop/Sample_Data.csv'
df = pd.read_csv(path, index_col=[0])
data = []
# Define rain levels to be contours in geojson
levels = [0.25,0.5,1,2.5,5,10]
colors = ['royalblue', 'cyan', 'lime', 'yellow', 'red']
vmin = 0
vmax = 1
cm = branca.colormap.LinearColormap(colors, vmin=vmin, vmax=vmax).to_step(len(levels))
x_orig = (df.long.values.tolist())
y_orig = (df.lat.values.tolist())
z_orig = np.asarray(df['Rain_in'].values.tolist())
x_arr = np.linspace(np.min(x_orig), np.max(x_orig), 500)
y_arr = np.linspace(np.min(y_orig), np.max(y_orig), 500)
x_mesh, y_mesh = np.meshgrid(x_arr, y_arr)
xscale = df.long.max() - df.long.min()
yscale = df.lat.max() - df.lat.min()
scale = np.array([xscale, yscale])
z_mesh = griddata((x_orig, y_orig), z_orig, (x_mesh, y_mesh), method='linear')
sigma = [5, 5]
z_mesh = sp.ndimage.filters.gaussian_filter(z_mesh, sigma, mode='nearest')
# Create the contour
contourf = plt.contourf(x_mesh, y_mesh, z_mesh, levels, alpha=0.9, colors=colors,
linestyles='none', vmin=vmin, vmax=vmax)
# Convert matplotlib contourf to geojson
geojson = geojsoncontour.contourf_to_geojson(
contourf=contourf,
min_angle_deg=3,
ndigits=2,
unit='in',
stroke_width=1,
fill_opacity=0.3)
d = json.loads(geojson)
len_features=len(d['features'])
if not data:
data.append(d)
else:
for i in range(len(d['features'])):
data[0]['features'].append(d['features'][i])
with open('/path/to/Sample.geojson', 'w') as f:
dump(geojson, f)
推荐答案
- 有两个核心选项
- 添加为层https://plotly.com/python/mapbox-layers/
- 添加为合唱轨迹https://plotly.com/python/mapbox-county-choropleth/
- 层-图例-与层相同选项,通过在图中添加附加轨迹来添加图例创建
- 下面对这两个选项进行了编码。更改
OPTION
的值以在它们之间切换 - 层表示没有图例或悬停文本
- 颜色栏这些都已显示,颜色栏已移动,因此不会与图例重叠。图例和悬停文本的更多宣福礼需要...
import json, requests
import pandas as pd
import geopandas as gpd
import plotly.express as px
txt = requests.get(
"https://raw.githubusercontent.com/jkiefn1/Contours_and_plotly/main/Sample.geojson"
).text
js = json.loads(json.loads(txt))
df = pd.read_csv(
"https://raw.githubusercontent.com/jkiefn1/Contours_and_plotly/main/Sample_Data.csv"
)
col = "Rand_Data"
fig = px.density_mapbox(
df,
lat="lat",
lon="long",
z="Rand_Data",
hover_data={
"lat": True, # remove from hover data
"long": True, # remove from hover data
col: True,
},
center=dict(lat=38.5, lon=-96),
zoom=3,
radius=30,
opacity=0.5,
mapbox_style="open-street-map",
color_continuous_scale="inferno",
)
OPTION = "layers-legend"
if OPTION[0:6]=="layers":
fig.update_traces(legendgroup="weather").update_layout(
mapbox={
"layers": [
{
"source": f,
"type": "fill",
"color": f["properties"]["fill"],
"opacity": f["properties"]["fill-opacity"],
}
for f in js["features"]
],
}
)
if OPTION=="layers-legend":
# create a dummy figure to create a legend for the geojson
dfl = pd.DataFrame(js["features"])
dfl = pd.merge(
dfl["properties"].apply(pd.Series),
dfl["geometry"].apply(pd.Series)["coordinates"].apply(len).rename("len"),
left_index=True,
right_index=True,
)
figl = px.bar(
dfl.loc[dfl["len"].gt(0)],
color="title",
x="fill",
y="fill-opacity",
color_discrete_map={cm[0]: cm[1] for cm in dfl.loc[:, ["title", "fill"]].values},
).update_traces(visible="legendonly")
fig.add_traces(figl.data).update_layout(
xaxis={"visible": False}, yaxis={"visible": False}, coloraxis={"colorbar":{"y":.25}}
)
else:
gdf = gpd.GeoDataFrame.from_features(js)
gdf = gdf.loc[~gdf.geometry.is_empty]
cmap = {
list(d.values())[0]: list(d.values())[1]
for d in gdf.loc[:, ["title", "fill"]].apply(dict, axis=1).tolist()
}
fig2 = px.choropleth_mapbox(
gdf,
geojson=gdf.geometry,
locations=gdf.index,
color="title",
color_discrete_map=cmap,
opacity=.3
)
fig.add_traces(fig2.data).update_layout(coloraxis={"colorbar":{"y":.25}})
fig
层
痕迹
这篇关于将GeoJSON等高线添加为Ploly Density_Mapbox上的图层的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
沃梦达教程
本文标题为:将GeoJSON等高线添加为Ploly Density_Mapbox上的图层
基础教程推荐
猜你喜欢
- 哪些 Python 包提供独立的事件系统? 2022-01-01
- Python 的 List 是如何实现的? 2022-01-01
- 如何在 Python 中检测文件是否为二进制(非文本)文 2022-01-01
- 合并具有多索引的两个数据帧 2022-01-01
- 症状类型错误:无法确定关系的真值 2022-01-01
- 如何在Python中绘制多元函数? 2022-01-01
- 使用Python匹配Stata加权xtil命令的确定方法? 2022-01-01
- 将 YAML 文件转换为 python dict 2022-01-01
- 使用 Google App Engine (Python) 将文件上传到 Google Cloud Storage 2022-01-01
- 使 Python 脚本在 Windows 上运行而不指定“.py";延期 2022-01-01