Counting swaps and comparisons in Quicksort (Python)(计算快速排序中的交换和比较(Python))
本文介绍了计算快速排序中的交换和比较(Python)的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我正在尝试在快速排序中计算交换和比较操作。 我认为我在正确的位置设置了计数器,但由于递归,我从未获得这些值的正确数量。为了在整个递归过程中存储这些值,我将它们作为参数(qui_swp和qui_com.)进行传递
例如:当我让此算法对包含500个整数的列表进行排序时,它返回120个交换和1个比较。
以下是我的代码:
qui = quicksort(numbers, 0, len(numbers)-1, 0, 0)
def partition(numbers, start_index, end_index, qui_swap):
# Select the middle value as the pivot.
midpoint = start_index + (end_index - start_index) // 2
pivot = numbers[midpoint]
# "low" and "high" start at the ends of the list segment
# and move towards each other.
low = start_index
high = end_index
done = False
while not done:
# Increment low while numbers[low] < pivot
while numbers[low] < pivot:
low = low + 1
# Decrement high while pivot < numbers[high]
while pivot < numbers[high]:
high = high - 1
# If low and high have crossed each other, the loop
# is done. If not, the elements are swapped, low is
# incremented and high is decremented.
if low >= high:
done = True
else:
temp = numbers[low]
numbers[low] = numbers[high]
numbers[high] = temp
low += 1
high -= 1
qui_swap += 1
# "high" is the last index in the left segment.
return (high, qui_swap)
def quicksort(numbers, start_index, end_index, qui_swap, qui_comp):
# Only attempt to sort the list segment if there are
# at least 2 elements
if end_index <= start_index:
return
# Partition the list segment
#count comparisons here
qui_comp += 1
high = partition(numbers, start_index, end_index,qui_swap)
qui_swap = high[1]
# Recursively sort the left segment
quicksort(numbers, start_index, int(high[0]), qui_swap, qui_comp+1)
# Recursively sort the right segment
quicksort(numbers, int(high[0]) + 1, end_index, qui_swap, qui_comp+1)
return(qui_swap, qui_comp)
推荐答案
给定Hoare's quicksort algorithm-
def quicksort(A, lo, hi):
if lo >= 0 and hi >= 0 and lo < hi:
p = partition(A, lo, hi)
quicksort(A, lo, p)
quicksort(A, p + 1, hi)
def partition(A, lo, hi):
pivot = A[(hi + lo) // 2]
i = lo
j = hi
while True:
while A[i] < pivot:
i += 1
while A[j] > pivot:
j -= 1
if i >= j:
return j
A[i], A[j] = A[j], A[i]
我将首先从partition
函数开始,并包括comp
和swap
计数器-
def partition(A, lo, hi):
comp = 0 # comparison counter
swap = 0 # swap counter
pivot = A[(hi + lo) // 2]
i = lo
j = hi
while True:
while A[i] < pivot:
comp += 1 # increase comparison count
i += 1
while A[j] > pivot:
comp += 1 # increase comparison count
j -= 1
if i >= j:
return (comp, swap, j) # return comp, swap, and j
swap += 1 # increase swap count
A[i], A[j] = A[j], A[i]
partition
现在返回(comp, swap, j)
的3元组,因此我们需要相应地调整quicksort
-
def quicksort(A, lo, hi):
if lo >= 0 and hi >= 0 and lo < hi:
(comp, swap, p) = partition(A, lo, hi) # receive 3-tuple
quicksort(A, lo, p)
quicksort(A, p + 1, hi)
为了使调用方能够接收这些信息,我们必须格式化quicksort
的返回值。我们可以从返回(comp, swap)
-
def quicksort(A, lo, hi):
if lo >= 0 and hi >= 0 and lo < hi:
(comp, swap, p) = partition(A, lo, hi)
quicksort(A, lo, p)
quicksort(A, p + 1, hi)
return (comp, swap) # return comp, swap
但这仅包括第一次传递的比较和交换计数器。现在我们知道quicksort
返回一个二元组(comp, swap)
,我们也可以从递归调用中获得它们-
def quicksort(A, lo, hi):
if lo >= 0 and hi >= 0 and lo < hi:
(comp, swap, p) = partition(A, lo, hi)
(lcomp, lswap) = quicksort(A, lo, p) # left comp, swap
(rcomp, rswap) = quicksort(A, p + 1, hi) # right comp, swap
return (comp + lcomp + rcomp, swap + lswap + rswap) # sum comp, swap
目前quicksort
只在if
分支下有一个返回值,在它隐式返回None
之外。在本例中,我们需要提供空的comp
和swap
计数器-
def quicksort(A, lo, hi):
if lo >= 0 and hi >= 0 and lo < hi:
(comp, swap, p) = partition(A, lo, hi)
(lcomp, lswap) = quicksort(A, lo, p)
(rcomp, rswap) = quicksort(A, p + 1, hi)
return (comp + lcomp + rcomp, swap + lswap + rswap)
return (0,0) # base case, return empty counters
我们完成了!我们的新quicksort
返回值,因此请确保将其存储到变量或print
print
x = [5,0,9,7,4,2,8,3,1,6]
print(quicksort(x, 0, len(x)-1))
print(x)
结果-
(31, 9) # 31 comparisons, 9 swaps
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] # sorted result
现在x
已排序。如果我们重复quicksort
,我们会得到不同的比较和交换计数器-
print(quicksort(x, 0, len(x)-1))
print(x)
(25, 0) # 25 comparisons, 0 swaps
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] # sorted result
对于较小的数组,我们可以更轻松地验证结果-
y = [2,1,3]
print(quicksort(y, 0, len(y)-1))
print(y)
(3, 1) # 3 comparisons, 1 swap
[1, 2, 3] # sorted result
如果您在将逐行编辑放入程序时遇到问题,这里有一个完整的工作版本-
def quicksort(A, lo, hi):
if lo >= 0 and hi >= 0 and lo < hi:
(comp, swap, p) = partition(A, lo, hi)
(lcomp, lswap) = quicksort(A, lo, p)
(rcomp, rswap) = quicksort(A, p + 1, hi)
return (comp + lcomp + rcomp, swap + lswap + rswap)
return (0,0)
def partition(A, lo, hi):
comp = 0
swap = 0
pivot = A[(hi + lo) // 2]
i = lo
j = hi
while True:
while A[i] < pivot:
comp += 1
i += 1
while A[j] > pivot:
comp += 1
j -= 1
if i >= j:
return (comp, swap, j)
swap += 1
A[i], A[j] = A[j], A[i]
x = [5,0,9,7,4,2,8,3,1,6]
print(quicksort(x, 0, len(x)-1))
print(x)
print(quicksort(x, 0, len(x)-1))
print(x)
(31, 9)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
(25, 0)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
y = [2,1,3]
print(quicksort(y, 0, len(y)-1))
print(y)
(3, 1)
[1, 2, 3]
这篇关于计算快速排序中的交换和比较(Python)的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
沃梦达教程
本文标题为:计算快速排序中的交换和比较(Python)
基础教程推荐
猜你喜欢
- Python 的 List 是如何实现的? 2022-01-01
- 哪些 Python 包提供独立的事件系统? 2022-01-01
- 症状类型错误:无法确定关系的真值 2022-01-01
- 合并具有多索引的两个数据帧 2022-01-01
- 将 YAML 文件转换为 python dict 2022-01-01
- 使用Python匹配Stata加权xtil命令的确定方法? 2022-01-01
- 如何在 Python 中检测文件是否为二进制(非文本)文 2022-01-01
- 使 Python 脚本在 Windows 上运行而不指定“.py";延期 2022-01-01
- 使用 Google App Engine (Python) 将文件上传到 Google Cloud Storage 2022-01-01
- 如何在Python中绘制多元函数? 2022-01-01