How to use python multiprocessing pool in continuous loop(如何在连续循环中使用PYTHON多处理池)
本文介绍了如何在连续循环中使用PYTHON多处理池的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我正在使用python多处理库来执行Selify脚本。我的代码如下:
#-- start and join multiple threads ---
thread_list = []
total_threads=10 #-- no of parallel threads
for i in range(total_threads):
t = Process(target=get_browser_and_start, args=[url,nlp,pixel])
thread_list.append(t)
print "starting thread..."
t.start()
for t in thread_list:
print "joining existing thread..."
t.join()
根据我对join()
函数的理解,它将等待每个进程完成。但我希望流程一发布,就会被分配另一项任务来执行新功能。
可以这样理解:
假设第一个实例中启动了8个进程。
no_of_tasks_to_perform = 100
for i in range(no_of_tasks_to_perform):
processes start(8)
if process no 2 finished executing, start new process
maintain 8 process at any point of time till
"i" is <= no_of_tasks_to_perform
推荐答案
与其时不时地启动新的进程,不如尝试将所有任务放到一个multiprocessing.Queue()
中,并启动8个长时间运行的进程,在每个进程中不断访问任务队列以获取新任务,然后执行作业,直到不再有任务。
在您的情况下,更像是这样:
from multiprocessing import Queue, Process
def worker(queue):
while not queue.empty():
task = queue.get()
# now start to work on your task
get_browser_and_start(url,nlp,pixel) # url, nlp, pixel can be unpacked from task
def main():
queue = Queue()
# Now put tasks into queue
no_of_tasks_to_perform = 100
for i in range(no_of_tasks_to_perform):
queue.put([url, nlp, pixel, ...])
# Now start all processes
process = Process(target=worker, args=(queue, ))
process.start()
...
process.join()
这篇关于如何在连续循环中使用PYTHON多处理池的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
沃梦达教程
本文标题为:如何在连续循环中使用PYTHON多处理池
基础教程推荐
猜你喜欢
- 使用 Google App Engine (Python) 将文件上传到 Google Cloud Storage 2022-01-01
- 使 Python 脚本在 Windows 上运行而不指定“.py";延期 2022-01-01
- 症状类型错误:无法确定关系的真值 2022-01-01
- 哪些 Python 包提供独立的事件系统? 2022-01-01
- 如何在 Python 中检测文件是否为二进制(非文本)文 2022-01-01
- 使用Python匹配Stata加权xtil命令的确定方法? 2022-01-01
- Python 的 List 是如何实现的? 2022-01-01
- 如何在Python中绘制多元函数? 2022-01-01
- 合并具有多索引的两个数据帧 2022-01-01
- 将 YAML 文件转换为 python dict 2022-01-01