Sklearn built-in function for Hard margin SVM(硬边距支持向量机的Sklearn内置函数)
本文介绍了硬边距支持向量机的Sklearn内置函数的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我知道软边距支持向量机有一个内置函数,如下所示。
from sklearn.svm import SVC
clf = SVC(C=1, kernel = 'linear')
clf.fit(X, y)
但对于硬间隔支持向量机,我们需要C=0
,对吗?但当我让C=0
时,代码报告错误ValueError: C <= 0
。
推荐答案
SCRICKIT-LEARN中没有硬边距支持向量机,因为它不是很有用的模型。从数值上讲,只需设置C=1e-10
就可以非常接近它,但这可能会导致收敛问题,因为在对偶公式中,支持向量机C是拉格朗日乘子的上界。
这篇关于硬边距支持向量机的Sklearn内置函数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
沃梦达教程
本文标题为:硬边距支持向量机的Sklearn内置函数


基础教程推荐
猜你喜欢
- PermissionError: pip 从 8.1.1 升级到 8.1.2 2022-01-01
- 无法导入 Pytorch [WinError 126] 找不到指定的模块 2022-01-01
- 使用大型矩阵时禁止 Pycharm 输出中的自动换行符 2022-01-01
- 修改列表中的数据帧不起作用 2022-01-01
- 求两个直方图的卷积 2022-01-01
- 在Python中从Azure BLOB存储中读取文件 2022-01-01
- 在同一图形上绘制Bokeh的烛台和音量条 2022-01-01
- PANDA VALUE_COUNTS包含GROUP BY之前的所有值 2022-01-01
- Plotly:如何设置绘图图形的样式,使其不显示缺失日期的间隙? 2022-01-01
- 包装空间模型 2022-01-01