Sklearn built-in function for Hard margin SVM(硬边距支持向量机的Sklearn内置函数)
本文介绍了硬边距支持向量机的Sklearn内置函数的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我知道软边距支持向量机有一个内置函数,如下所示。
from sklearn.svm import SVC
clf = SVC(C=1, kernel = 'linear')
clf.fit(X, y)
但对于硬间隔支持向量机,我们需要C=0
,对吗?但当我让C=0
时,代码报告错误ValueError: C <= 0
。
推荐答案
SCRICKIT-LEARN中没有硬边距支持向量机,因为它不是很有用的模型。从数值上讲,只需设置C=1e-10
就可以非常接近它,但这可能会导致收敛问题,因为在对偶公式中,支持向量机C是拉格朗日乘子的上界。
这篇关于硬边距支持向量机的Sklearn内置函数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
沃梦达教程
本文标题为:硬边距支持向量机的Sklearn内置函数
基础教程推荐
猜你喜欢
- 使用Python匹配Stata加权xtil命令的确定方法? 2022-01-01
- 将 YAML 文件转换为 python dict 2022-01-01
- 如何在Python中绘制多元函数? 2022-01-01
- 症状类型错误:无法确定关系的真值 2022-01-01
- 使用 Google App Engine (Python) 将文件上传到 Google Cloud Storage 2022-01-01
- 哪些 Python 包提供独立的事件系统? 2022-01-01
- Python 的 List 是如何实现的? 2022-01-01
- 合并具有多索引的两个数据帧 2022-01-01
- 如何在 Python 中检测文件是否为二进制(非文本)文 2022-01-01
- 使 Python 脚本在 Windows 上运行而不指定“.py";延期 2022-01-01