如何将滑块值动态读取到 JSXGraph 中的函数中?

How to read slider values dynamically into a function in JSXGraph?(如何将滑块值动态读取到 JSXGraph 中的函数中?)

本文介绍了如何将滑块值动态读取到 JSXGraph 中的函数中?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

2019 年 5 月 22 日更新

我做了一个更简单的不工作"代码示例,并通过在绘制点时在本地定义 K1 和 KK 来模仿工作代码",但是在一个方法中这样做,让它们只定义一次并且具有相同的所有点的定义.由于我希望将点绘制在抛物线上,因此我现在创建与旋转轴和符号具有固定半径的点,这样我只需将符号从 +1 切换到 - 即可创建相隔 180 度的两个点1 在 xz 平面中绘制参数化点时.不过,什么都没有画出来.这是一个链接 我想看的东西(但代码很丑).

I did a simpler example of the "not working" code and also imitated the "working code" by defining K1 and KK locally when drawing the points, but doing this inside a method to have them defined only once and have the same definition for all points. Since I want the points to be drawn on a parabola, I now create points that have a fixed radius from the axis of revolution and a sign, so that I can create two points 180 degrees apart by just switching the sign from +1 to -1 when drawing the parametrized points in the xz plane. Still, nothing gets drawn. Here is a link to the thing I want to see (but the code is ugly).

低于最新尝试(绘制的点较少,只是为了看看它是否有效).

Below the newest try (with less points being drawn, just to see if it works at all).

    const board = JXG.JSXGraph.initBoard('jxgbox', {
  boundingbox: [-10, 10, 10, -10],
  axis: true,
  showCopyright: true,
  showNavigation: true,
  pan: false,
  grid: false,

  zoom: {
    factorX: 1.25,
    factorY: 1.25,
    wheel: false
  }
});

//create z axis
var zAxis = board.create('axis', [
  [0, 0],
  [-1, -1]
], {
  ticks: {
    majorHeight: 10,
    drawLabels: false
  }
});

//create direction of view for projections
var cam = [4, 4, 30]; // [x,y,z]
var r = 6.0;
var origin = [0, 0, 0];

// Function for parallel projection
var project = function(crd, cam) {
  var d = -crd[2] / cam[2];
  return [1, crd[0] + d * cam[0], crd[1] + d * cam[1]];
};

//create slider for rotating the parabola
var sRadius = board.create('slider', [
  [1, -8.5],
  [6, -8.5],
  [-10, 0, 10]
], {
  name: 'angle',
  needsRegularUpdate: true
  //snapWidth: 1
});

//create slider for adjusting the angular speed
var sOmega = board.create('slider', [
  [1, -7.5],
  [6, -7.5],
  [0, 2, 10]
], {
  name: 'Omega',
  needsRegularUpdate: true
  //snapWidth: 1,
});

//fix parameters
const g = 9.81 //gravitational acceleration
const h0 = 5 //initial height of the water surface

//define radius from the y-axis for I3 and I4
const R34 = Math.sqrt(2);


// Function for parallel projection
var project = function(crd, cam) {
  var d = -crd[2] / cam[2];
  return [1, crd[0] + d * cam[0], crd[1] + d * cam[1]];
};


//function creates points for drawing conic sections
function PPoint2(radius,sign,namep,fixval) {
    this.R=radius;
  this.S=sign;
  this.Namep=namep;
  this.Fixval=fixval
}


//method for drawing each Point
PPoint2.prototype.draw = function(pp) {
    board.create('point', [function() {
    var K1 = sOmega.Value()*sOmega.Value()/g,
            KK = 1/4*sOmega.Value()*sOmega.Value()/g,
        v = sRadius.Value() * Math.PI * 0.5 / 10.0,
            c = [pp.sign*pp.R*Math.sin(v),K1/2*pp.R*pp.R-KK+h0,pp.sign*pp.R*Math.cos(v)];
    //debugger
    return project(c, cam);
  }
], {
  fixed: this.Fixval,
  name: this.Namep,
  visible: true
  })
}


//create and draw points

var p3 = new PPoint2(0,-1,'p_3','false');
var I_1 = new PPoint2(r,1,'I_1','false');

//debugger


p3.draw(p3)
I_1.draw(I_1)

原始问题如下:

我正在使用 JSXGraph 对桶参数"(水如何在旋转桶中形成抛物面的形状)进行说明.我想A) 抛物线的形状取决于铲斗的角速度Omega".B) 将抛物线从 3D 投影到 2D 图像,并且用户可以使用滑块转动抛物线.

I am doing an illustration of the "bucket argument" (how water takes the shape of a paraboloid in a spinning bucket) using JSXGraph. I would like to A) Have the shape of the parabola be dependent on the angular velocity "Omega" of the bucket. B) Have the parabola be projected from 3D into a 2D image and the user being able to turn the parabola using a slider.

对于 A)我的代码使用滑块Omega",对于 B)滑块角度".

For A) my code uses the slider "Omega" and for B) the slider "angle".

滑块值被读入全局变量 K1(抛物线二阶项的系数)和 KK(抛物线的常数项).然后绘制五个点(p3 和 I_1-I_4),并且应该通过这些点绘制抛物线.这些点是使用初始滑块值绘制的,但更新(即滑动)滑块不会使点移动.另外,抛物线根本没有画出来.

The slider values are read into global variables K1 (coeffiecient of the second order term of the parabola) and KK (constant term of the parabola). Then five points (p3 and I_1-I_4) are drawn and the parabola should be drawn through these points. The points are drawn with the initial slider values, but updating (i.e. sliding) the sliders doesn't make the points move. Also, the parabola is not drawn at all.

如何使点根据当前滑块值调整位置?我想要的功能在这个小提琴 https://jsfiddle.net/ync3pkx5/1/ 中实现(但代码很丑陋,KK 和 K1 是为每个点在本地定义的,但我希望它们是全局的).

How to make the points adjust their positions according to the current slider values? The functionality I want is implemented in this fiddle https://jsfiddle.net/ync3pkx5/1/ (but the code is ugly and KK and K1 are defined locally for each point, but I want them to be global).

HTML

<div id="jxgbox" class="jxgbox" style="width:500px; height:500px">
</div>

JS

    //create drawing board
const board = JXG.JSXGraph.initBoard('jxgbox', {
  boundingbox: [-10, 10, 10, -10],
  axis: true,
  showCopyright: true,
  showNavigation: true,
  pan: false,
  grid: false,

  zoom: {
    factorX: 1.25,
    factorY: 1.25,
    wheel: false
  }
});

//create z axis
var zAxis = board.create('axis', [
  [0, 0],
  [-1, -1]
], {
  ticks: {
    majorHeight: 10,
    drawLabels: false
  }
});

//create direction of view for projections
var cam = [4, 4, 30]; // [x,y,z]
var r = 6.0;
var origin = [0, 0, 0];

// Function for parallel projection
var project = function(crd, cam) {
  var d = -crd[2] / cam[2];
  return [1, crd[0] + d * cam[0], crd[1] + d * cam[1]];
};

//create slider for rotating the parabola
var sRadius = board.create('slider', [
  [1, -8.5],
  [6, -8.5],
  [-10, 0, 10]
], {
  name: 'angle',
  //snapWidth: 1
});

//create slider for adjusting the angular speed (inactive)
var sOmega = board.create('slider', [
  [1, -7.5],
  [6, -7.5],
  [0, 0, 10]
], {
  name: 'Omega',
  //snapWidth: 1,
});

//fix parameters
var g = 9.81 //gravitational acceleration
var h0 = 5 //initial height of the water surface
//peak coordinates of the fixed parabola
var KK = 1/4*sOmega.Value()*sOmega.Value()*r*r/g; //constant term in the equation of the parabola
var peak = [0, -KK+h0];
//point for mirroring
var pmirr = board.create('point', [0, h0/2], {
  visible: false
});
//define radius from the y-axis for I3 and I4
var R34 = Math.sqrt(2);

//function for projecting poomntson the parabola
var PProject = function(xx,yy,zz) {
    var K1 = sOmega.Value() * sOmega.Value() / g,
      v = sRadius.Value() * Math.PI * 0.5 / 10.0,
      KK = 1/4*sOmega.Value()*sOmega.Value()*r*r/g;
    return project([xx * Math.sin(v), K1/2 * yy * yy-KK+h0, zz * Math.cos(v)], cam);
  }


//p1-p3 are used for drawing the elliptical curves circ1 and prbl2
var p1 = board.create('point', [r, 0], {
  fixed: true,
  name: 'p_1',
  visible: false
});
var p2 = board.create('point', [-r, 0], {
  fixed: true,
  name: 'p_2',
  visible: false
});


var p3 = board.create('point', [
  function() {
    var KK = 1/4*sOmega.Value()*sOmega.Value()*r*r/g,
            c =[0,-KK+h0,0];
    //alert(KK);
    //alert(h0);
    return project(c, cam);
  }
], {
  visible: true,
  name: 'p3'
});

//divisor when drawing points A-C for ellipses and points A2-C2
var div = Math.sqrt(2)

//point variables for drawing circles   
var A = board.create('point', [
  function() {
    var c = [r / div, 0, r / div];
    return project(c, cam);
  }
], {
  name: 'A',
  visible: false
});


var B = board.create('point', [
  function() {
    var c = [-r / div, 0, r / div];
    return project(c, cam);
  }
], {
  name: 'B',
  visible: false
});


var C = board.create('point', [
  function() {
    var c = [r / div, 0, -r / div];
    return project(c, cam);
  }
], {
  name: 'C',
  visible: false
});


//I-I4 are points for drawing the rotating parabola
var I = board.create('point', [
  function() {
    var K1 = sOmega.Value() * sOmega.Value() / g,
      v = sRadius.Value() * Math.PI * 0.5 / 10.0,
      KK = 1/4*sOmega.Value()*sOmega.Value()*r*r/g;
    return project([r * Math.sin(v), K1/2 * r * r-KK+h0, r * Math.cos(v)], cam);
  }
], {
  visible: true,
  name: 'I'
});

var I2 = board.create('point', [
  function() {
    var K1 = sOmega.Value() * sOmega.Value() / g, 
            v = sRadius.Value() * Math.PI * 0.5 / 10.0,
        KK = 1/4*sOmega.Value()*sOmega.Value()*r*r/g;
    return project([-r * Math.sin(v), K1/2 * r * r-KK+h0, -r * Math.cos(v)], cam);
  }
], {
  visible: true,
  name: 'I_2'
});


var I3 = board.create('point', [
  function() {
    var K1 = sOmega.Value() * sOmega.Value() / g,
            v = sRadius.Value() * Math.PI * 0.5 / 10.0,
        KK = 1/4*sOmega.Value()*sOmega.Value()*r*r/g;
    return project([R34 * Math.sin(v), K1/2 * R34 * R34-KK+h0, R34 * Math.cos(v)], cam);
  }
], {
  visible: true,
  name: 'I_3'
});

var I4 = board.create('point', [
  function() {
    var K1 = sOmega.Value() * sOmega.Value() / g, 
            v = sRadius.Value() * Math.PI * 0.5 / 10.0,
        KK = 1/4*sOmega.Value()*sOmega.Value()*r*r/g;
    return project([-R34 * Math.sin(v), K1/2 * R34 * R34-KK+h0, -R34 * Math.cos(v)], cam);
  }
], {
  visible: true,
  name: 'I_4'
});


//draw circle on surface y=0
var circ1 = board.create('conic', [A, B, C, p2, p1]);
//draw a mirror circle of circ1 w.r.t. to pmirr and a small circle that delimits the parabolas
var circ2 = board.create('mirrorelement', [circ1, pmirr]);

//draw the rotating parabola
var prbl2 = board.create('conic', [I, I2, I3, I4, p3], {
  strokeColor: '#CA7291',
  strokeWidth: 2,
  //trace :true
});

debugger;

//add textbox
var txt1 = board.create('text', [3, 7, 'The blue lines delimit the volume of water when Omega = 0 and the red parabola delimits the volume without water as the bucket is rotating (surface h(r)). The water volume is constant, independent of Omega']);

这是我正在制作并想要开始工作的小提琴https://jsfiddle.net/c8tr4dh3/2/

Here is the fiddle I am working on and would want to get to work https://jsfiddle.net/c8tr4dh3/2/

HTML

 <div id="jxgbox" class="jxgbox" style="width:500px; height:500px">
    </div>

JS

    const board = JXG.JSXGraph.initBoard('jxgbox', {
  boundingbox: [-10, 10, 10, -10],
  axis: true,
  showCopyright: true,
  showNavigation: true,
  pan: false,
  grid: false,

  zoom: {
    factorX: 1.25,
    factorY: 1.25,
    wheel: false
  }
});

//create z axis
var zAxis = board.create('axis', [
  [0, 0],
  [-1, -1]
], {
  ticks: {
    majorHeight: 10,
    drawLabels: false
  }
});

//create direction of view for projections
var cam = [4, 4, 30]; // [x,y,z]
var r = 6.0;
var origin = [0, 0, 0];

// Function for parallel projection
var project = function(crd, cam) {
  var d = -crd[2] / cam[2];
  return [1, crd[0] + d * cam[0], crd[1] + d * cam[1]];
};

//create slider for rotating the parabola
var sRadius = board.create('slider', [
  [1, -8.5],
  [6, -8.5],
  [-10, 0, 10]
], {
  name: 'angle',
  needsRegularUpdate: true
  //snapWidth: 1
});

//create slider for adjusting the angular speed (inactive)
var sOmega = board.create('slider', [
  [1, -7.5],
  [6, -7.5],
  [0, 0, 10]
], {
  name: 'Omega',
  needsRegularUpdate: true
  //snapWidth: 1,
});


//fix parameters
var g = 9.81 //gravitational acceleration
var h0 = 5 //initial height of the water surface
var K1 = sOmega.Value() * sOmega.Value() / g; //coeffficient of the quadratic term of the parabola
var KK = 1/4*sOmega.Value()*sOmega.Value()*r*r/g; //constant term in the equation of the parabola
//peak coordinates of the fixed parabola
var peak = [0, -KK+h0];
//slider auxiliary variable
var v = sRadius.Value() * Math.PI * 0.5 / 10.0;


//define radius from the y-axis for I3 and I4
var R34 = Math.sqrt(2);

// Function for parallel projection
var project = function(crd, cam) {
  var d = -crd[2] / cam[2];
  return [1, crd[0] + d * cam[0], crd[1] + d * cam[1]];
};


//function creates points for drawing conic sections
function PPoint(xx, yy,zz,namep,fixval) {
    this.XX=xx;
  this.YY=yy;
  this.ZZ=zz;
  this.Namep=namep;
  this.Fixval=fixval
}


//method for drawing each Point
PPoint.prototype.draw = function(pp) {
    board.create('point', [function() {
    var c = [pp.XX,pp.YY,pp.ZZ];
    //debugger
    return project(c, cam);
  }
], {
  fixed: this.Fixval,
  name: this.Namep,
  visible: true
  })
}

var div=Math.sqrt(2);

//create and draw points
var p3 = new PPoint(0,peak[1],0,'p_3','false');
//debugger
var I_1 = new PPoint(r*Math.sin(v),K1/2*r*r-KK+h0,r*Math.cos(v),'I_1','false');
var I_2 = new PPoint(-r*Math.sin(v),K1/2*r*r-KK+h0,-r*Math.cos(v),'I_2','false');
var I_3 = new PPoint(R34*Math.sin(v),K1/2*R34*R34-KK+h0,R34*Math.cos(v),'I_3','false');
var I_4 = new PPoint(-R34*Math.sin(v),K1/2*R34*R34-KK+h0,-R34*Math.cos(v),'I_4','false');

p3.draw(p3)
I_1.draw(I_1)
I_2.draw(I_2)
I_3.draw(I_3)
//debugger;
I_4.draw(I_4)



//draw the rotating parabola
var prbl = board.create('conic', [[I_1.XX,I_1.YY,I_1.ZZ], [I_2.XX,I_2.YY,I_2.ZZ], [I_3.XX,I_3.YY,I_3.ZZ], [I_4.XX,I_4.YY,I_4.ZZ],[p3.XX,p3.YY,p3.ZZ]], {
  strokeColor: '#CA7291',
  strokeWidth: 2,
  //trace :true
});


//debugger;
//add textbox
var txt1 = board.create('text', [3, 7, 'The blue lines delimit the volume of water when Omega = 0 and the red parabola delimits the volume without water as the bucket is rotating (surface h(r)). The water volume is constant, independent of Omega']);

第一个小提琴中的蓝色圆圈并不重要,它们可以稍后添加到另一个.

The blue circles in the first fiddle are not critical, they can be added to the other one later.

经过一些调试,抛物线的父母在两个小提琴中都有isReal:true",但在不工作的小提琴中,抛物线本身有isReal:false",而正在工作的小提琴有isReal: true" 为抛物线.不过,不确定这是否相关.

Having done some debugging, the parents of the parabola all have "isReal: true" in both fiddles, but in the fiddle that isn't working the parabola itself has "isReal: false" while the fiddle that's working has "isReal: true" for the parabola. Not sure whether that's relevant, though.

在非工作小提琴中,我还尝试将整个代码包含在board.on('mouse,function(){here all code from line 59 onwards{) 中以使点移动,但这并没有帮助;根本没有绘制点,甚至没有绘制初始位置.

In the non-working fiddle, I also tried enclosing the whole code into "board.on('mouse,function(){here all code from line 59 onwards{) to get the points move, but that didn't help; the points aren't drawn at all, not even the initial positions.

推荐答案

好像你上面贴的更新代码有一个很简单的错误:sign的值存储在属性pp.S,但您尝试以 pp.sign 的形式访问它.我的建议是使用以下代码:

It seems that in your updated code posted above there is a very simple error: The value of sign is stored in the property pp.S, but you try to access it as pp.sign. My suggestion is to use the following code:

function PPoint2(radius,sign,namep,fixval) {
    this.R = radius;
    this.S = sign;
    this.Namep = namep;
    this.Fixval = fixval;
}


//method for drawing each Point
PPoint2.prototype.draw = function() {
    var pp = this;
    this.point = board.create('point', [function() {
        var K1 = sOmega.Value()*sOmega.Value()/g,
            KK = 1/4*sOmega.Value()*sOmega.Value()/g,
            v = sRadius.Value() * Math.PI * 0.5 / 10.0,
            c = [pp.S*pp.R*Math.sin(v),
                 K1/2*pp.R*pp.R-KK+h0,
                 pp.S*pp.R*Math.cos(v)];
        return project(c, cam);
        }], {
    fixed: this.Fixval,
    name: this.Namep,
    visible: true
    });
};

//create and draw points
var p3 = new PPoint2(0,-1,'p_3','false');
var I_1 = new PPoint2(r,1,'I_1','false');

p3.draw();
I_1.draw();

这篇关于如何将滑块值动态读取到 JSXGraph 中的函数中?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本文标题为:如何将滑块值动态读取到 JSXGraph 中的函数中?

基础教程推荐