目录什么是PImpl机制为什么用PImpl机制PImpl实现方法一方法二PImpl缺点总结源码仓库什么是PImpl机制Pointertoimplementation(PImpl),通过将类的...
源码仓库
什么是PImpl机制
Pointer to implementation(PImpl ),通过将类的实现细节放在一个单独的类中,从其对象表示中删除它们,通过一个不透明的指针访问它们(cppreference 是这么说的)
通过一个私有的成员指针,将指针所指向的类的内部实现数据进行隐藏
class Demo {
public:
...
private:
DemoImp* imp_;
}
为什么用PImpl 机制
个人拙见
- C++ 不像Java 后端型代码,能有行业定式的列目录名形成规范(controller、Dao等)
- 隐藏实现,降低耦合性和分离接口(隐藏类的具体实现)
- 通过编译期的封装(隐藏实现类的细节)
业界实现
优秀开源代码有实现
PImpl实现
方法一
cook_cuisine.h
#pragma once
#include <unordered_map>
#include <vector>
#include <memory>
// Pointer to impl ementation
class CookImpl;
// 后厨
class Cook {
public:
Cook(int, const std::vector<std::string>&);
~Cook();
std::vector<std::string> getMenu(); /* 获取菜单 */
uint32_t getChefNum(); /* 获取厨师数量 */
private:
CookImpl* impl_;
};
typedef std::shared_ptr<Cook> CookPtr; // 美妙的typedef 懒人工具
cook_cuisine.cc
#include "cook_cuisine.h"
class CookImpl {
public:
CookImpl(uint32_t checf_num, const std::vector<std::string>& menu):checf_num_(checf_num), menu_(menu) {}
std::vector<std::string> getMenu();
uint32_t getChefNum();
private:
uint32_t checf_num_;
std::vector<std::string> menu_;
};
std::vector<std::string> CookImpl::getMenu() {
return menu_;
}
uint32_t CookImpl::getChefNum() {
return checf_num_;
}
Cook::Cook(int chef_num, const std::vector<std::string>& menu) {
impl_ = new CookImpl(chef_num, menu);
}
Cook::~Cook() {
delete impl_;
}
std::vector<std::string> Cook::getMenu() {
return impl_->getMenu();
}
uint32_t Cook::getChefNum() {
return impl_->getChefNum();
}
方法二
cook_cuisine.h
#pragma once
#include <unordered_map>
#include <vector>
#include <memory>
#include "cook_cuisine_imp.h"
// 后厨
class Cook {
public:
Cook(int, const std::vector<std::string>&);
~Cook();
std::vector<std::string> getMenu(); /* 获取菜单 */
uint32_t getChefNum(); /* 获取厨师数量 */
private:
CookImplPtr impl_;
};
typedef std::shared_ptr<Cook> CookPtr;
cook_cuisine.cc
#include "cook_cuisine.h"
Cook::Cook(int chef_num, const std::vector<std::string>& menu) {
impl_.reset(new CookImpl(chef_num, menu));
}
Cook::~Cook() {
}
std::vector<std::string> Cook::getMenu() {
return impl_->getMenu();
}
uint32_t Cook::getChefNum() {
return impl_->getChefNum();
}
cook_cuisine_imp.h
#pragma once
#include <vector>
#include <unordered_map>
#include <memory>
class CookImpl {
public:
CookImpl(uint32_t checf_num, const std::vector<std::string>& menu):checf_num_(checf_num), menu_(menu) {}
std::vector<std::string> getMenu();
uint32_t getChefNum();
private:
uint32_t checf_num_;
std::vector<std::string> menu_;
};
typedef std::shared_ptr<CookImpl> CookImplPtr;
cook_cusine_imp.cc
#include "cook_cuisine_imp.h"
std::vector<std::string> CookImpl::getMenu() {
return menu_;
}
uint32_t CookImpl::getChefNum() {
return checf_num_;
}
main.cc
#include "cook_cuisine.h"
#include <IOStream>
using namespace std; // Testing, 平时开发可千万别用这句
int main() {
int checf_num = 10;
const std::vector<std::string> menus = { "Chicken", "Beef", "Noodle", "Milk" };
CookPtr cook(new Cook(checf_num, menus));
auto cook_menu = cook->getMenu();
auto cook_checf_num = cook->getChefNum();
cout << "======================Chinese Cook======================\n";
cout << "============Checf: " << cook_checf_num << " people\n";
cout << "==========Menu\n";
for (size_t i = 0; i < cook_menu.size(); i++) {
cout << "============" << i + 1 << " : " << cook_menu[i] << "\n";
}
return 0;
}
CMakeLists.txt
mkdir build
cd build
cmake ..
PImpl 缺点
空间开销:每个类都需要额外的指针内存指向实现类
时间开销:每个类间接访问实现的时候多一个间接指针操作的开销
阅读开销:使用、阅读和调试上带来一些不便(不是啥问题)
总结
每种设计方法都有它的优点和缺点
PImpl 用一些内存空间和额外类的实现换取耦合性的下降,是可以接受的
但重点在:在性能/内存要求不敏感处,PImpl 技术才更优不错的发挥舞台
极端例子:
你不可能在斐波那契的实现中还加个PImpl 机制,多此一举
到此这篇关于C++ pimpl机制详细讲解的文章就介绍到这了,更多相关C++ pimpl机制内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
本文标题为:C++ pimpl机制详细讲解
基础教程推荐
- C利用语言实现数据结构之队列 2022-11-22
- 详解c# Emit技术 2023-03-25
- C++中的atoi 函数简介 2023-01-05
- C语言基础全局变量与局部变量教程详解 2022-12-31
- C语言 structural body结构体详解用法 2022-12-06
- C++使用easyX库实现三星环绕效果流程详解 2023-06-26
- 如何C++使用模板特化功能 2023-03-05
- C/C++编程中const的使用详解 2023-03-26
- C++详细实现完整图书管理功能 2023-04-04
- 一文带你了解C++中的字符替换方法 2023-07-20