这篇文章主要介绍了C#实现斐波那契数列的几种方法整理,主要介绍了递归,循环,公式和矩阵法等,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
什么是斐波那契数列?经典数学问题之一;斐波那契数列,又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21、……想必看到这个数列大家很容易的就推算出来后面好几项的值,那么到底有什么规律,简单说,就是前两项的和是第三项的值,用递归算法计第50位多少。
这个数列从第3项开始,每一项都等于前两项之和。
斐波那契数列:{1,1,2,3,5,8,13,21...}
递归算法,耗时最长的算法,效率很低。
public static long CalcA(int n)
{
if (n <= 0) return 0;
if (n <= 2) return 1;
return checked(CalcA(n - 2) + CalcA(n - 1));
}
通过循环来实现
public static long CalcB(int n)
{
if (n <= 0) return 0;
var a = 1L;
var b = 1L;
var result = 1L;
for (var i = 3; i <= n; i++)
{
result = checked(a + b);
a = b;
b = result;
}
return result;
}
通过循环的改进写法
public static long CalcC(int n)
{
if (n <= 0) return 0;
var a = 1L;
var b = 1L;
for (var i = 3; i <= n; i++)
{
b = checked(a + b);
a = b - a;
}
return b;
}
通用公式法
/// <summary>
/// F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
/// </summary>
/// <param name="n"></param>
/// <returns></returns>
public static long CalcD(int n)
{
if (n <= 0) return 0;
if (n <= 2) return 1; //加上,可减少运算。
var a = 1 / Math.Sqrt(5);
var b = Math.Pow((1 + Math.Sqrt(5)) / 2, n);
var c = Math.Pow((1 - Math.Sqrt(5)) / 2, n);
return checked((long)(a * (b - c)));
}
其他方法
using System;
using System.Diagnostics;
namespace Fibonacci
{
class Program
{
static void Main(string[] args)
{
ulong result;
int number = 10;
Console.WriteLine("************* number={0} *************", number);
Stopwatch watch1 = new Stopwatch();
watch1.Start();
result = F1(number);
watch1.Stop();
Console.WriteLine("F1({0})=" + result + " 耗时:" + watch1.Elapsed, number);
Stopwatch watch2 = new Stopwatch();
watch2.Start();
result = F2(number);
watch2.Stop();
Console.WriteLine("F2({0})=" + result + " 耗时:" + watch2.Elapsed, number);
Stopwatch watch3 = new Stopwatch();
watch3.Start();
result = F3(number);
watch3.Stop();
Console.WriteLine("F3({0})=" + result + " 耗时:" + watch3.Elapsed, number);
Stopwatch watch4 = new Stopwatch();
watch4.Start();
double result4 = F4(number);
watch4.Stop();
Console.WriteLine("F4({0})=" + result4 + " 耗时:" + watch4.Elapsed, number);
Console.WriteLine();
Console.WriteLine("结束");
Console.ReadKey();
}
/// <summary>
/// 迭代法
/// </summary>
/// <param name="number"></param>
/// <returns></returns>
private static ulong F1(int number)
{
if (number == 1 || number == 2)
{
return 1;
}
else
{
return F1(number - 1) + F1(number - 2);
}
}
/// <summary>
/// 直接法
/// </summary>
/// <param name="number"></param>
/// <returns></returns>
private static ulong F2(int number)
{
ulong a = 1, b = 1;
if (number == 1 || number == 2)
{
return 1;
}
else
{
for (int i = 3; i <= number; i++)
{
ulong c = a + b;
b = a;
a = c;
}
return a;
}
}
/// <summary>
/// 矩阵法
/// </summary>
/// <param name="n"></param>
/// <returns></returns>
static ulong F3(int n)
{
ulong[,] a = new ulong[2, 2] { { 1, 1 }, { 1, 0 } };
ulong[,] b = MatirxPower(a, n);
return b[1, 0];
}
#region F3
static ulong[,] MatirxPower(ulong[,] a, int n)
{
if (n == 1) { return a; }
else if (n == 2) { return MatirxMultiplication(a, a); }
else if (n % 2 == 0)
{
ulong[,] temp = MatirxPower(a, n / 2);
return MatirxMultiplication(temp, temp);
}
else
{
ulong[,] temp = MatirxPower(a, n / 2);
return MatirxMultiplication(MatirxMultiplication(temp, temp), a);
}
}
static ulong[,] MatirxMultiplication(ulong[,] a, ulong[,] b)
{
ulong[,] c = new ulong[2, 2];
for (int i = 0; i < 2; i++)
{
for (int j = 0; j < 2; j++)
{
for (int k = 0; k < 2; k++)
{
c[i, j] += a[i, k] * b[k, j];
}
}
}
return c;
}
#endregion
/// <summary>
/// 通项公式法
/// </summary>
/// <param name="n"></param>
/// <returns></returns>
static double F4(int n)
{
double sqrt5 = Math.Sqrt(5);
return (1/sqrt5*(Math.Pow((1+sqrt5)/2,n)-Math.Pow((1-sqrt5)/2,n)));
}
}
}
OK,就这些了。用的long类型来存储结果,当n>92时会内存溢出。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程学习网。
沃梦达教程
本文标题为:C#实现斐波那契数列的几种方法整理
基础教程推荐
猜你喜欢
- ZooKeeper的安装及部署教程 2023-01-22
- C# List实现行转列的通用方案 2022-11-02
- C# windows语音识别与朗读实例 2023-04-27
- winform把Office转成PDF文件 2023-06-14
- linux – 如何在Debian Jessie中安装dotnet core sdk 2023-09-26
- 一个读写csv文件的C#类 2022-11-06
- unity实现动态排行榜 2023-04-27
- C#类和结构详解 2023-05-30
- C# 调用WebService的方法 2023-03-09
- C#控制台实现飞行棋小游戏 2023-04-22