这篇文章主要为大家详细介绍了unity实现贴图矩阵运算,旋转平移缩放,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
我们在shader中对贴图处理时,有时候会有一些比较复杂的运算,比方说三角函数,开方等,一般情况下,如果可以在越上层做运算,性能会越高。C# > Vertex > fragment
因此,考虑到贴图的旋转用到的三角函数,可以使用在C#中传入旋转矩阵得到,然后使用uv直接乘以矩阵就可以了。
封装了vmatrix4x4,分享一下:
using UnityEngine;
namespace D11.Skin
{
public class VMatrix
{
public float[,] m;
public VMatrix()
{
m = new float[4, 4];
m[0, 0] = 0.0f; m[0, 1] = 0.0f; m[0, 2] = 0.0f; m[0, 3] = 0.0f;
m[1, 0] = 0.0f; m[1, 1] = 0.0f; m[1, 2] = 0.0f; m[1, 3] = 0.0f;
m[2, 0] = 0.0f; m[2, 1] = 0.0f; m[2, 2] = 0.0f; m[2, 3] = 0.0f;
m[3, 0] = 0.0f; m[3, 1] = 0.0f; m[3, 2] = 0.0f; m[3, 3] = 0.0f;
}
public static void MatrixSetIdentity(VMatrix matrix)
{
matrix.m[0,0] = 1.0f; matrix.m[0,1] = 0.0f; matrix.m[0,2] = 0.0f; matrix.m[0,3] = 0.0f;
matrix.m[1,0] = 0.0f; matrix.m[1,1] = 1.0f; matrix.m[1,2] = 0.0f; matrix.m[1,3] = 0.0f;
matrix.m[2,0] = 0.0f; matrix.m[2,1] = 0.0f; matrix.m[2,2] = 1.0f; matrix.m[2,3] = 0.0f;
matrix.m[3,0] = 0.0f; matrix.m[3,1] = 0.0f; matrix.m[3,2] = 0.0f; matrix.m[3,3] = 1.0f;
}
public static void MatrixBuildTranslation(VMatrix matrix, float x, float y, float z)
{
MatrixSetIdentity(matrix);
matrix.m[0,3] = x;
matrix.m[1,3] = y;
matrix.m[2,3] = z;
}
public static void MatrixBuildTranslation(VMatrix matrix, Vector3 vec)
{
MatrixSetIdentity(matrix);
matrix.m[0, 3] = vec.x;
matrix.m[1, 3] = vec.y;
matrix.m[2, 3] = vec.z;
}
public static void MatrixBuildScale(VMatrix matrix, float x, float y, float z)
{
matrix.m[0, 0] = x; matrix.m[0, 1] = 0.0f; matrix.m[0, 2] = 0.0f; matrix.m[0, 3] = 0.0f;
matrix.m[1, 0] = 0.0f; matrix.m[1, 1] = y; matrix.m[1, 2] = 0.0f; matrix.m[1, 3] = 0.0f;
matrix.m[2, 0] = 0.0f; matrix.m[2, 1] = 0.0f; matrix.m[2, 2] = z; matrix.m[2, 3] = 0.0f;
matrix.m[3, 0] = 0.0f; matrix.m[3, 1] = 0.0f; matrix.m[3, 2] = 0.0f; matrix.m[3, 3] = 1.0f;
}
public static void MatrixBuildScale(VMatrix matrix, Vector3 scale)
{
MatrixBuildScale(matrix, scale.x, scale.y, scale.z);
}
public static void MatrixBuildRotate(VMatrix matrix, float angleDegrees)
{
float radians = angleDegrees * (Mathf.PI / 180.0f);
float fSin = Mathf.Sin(radians);
float fCos = Mathf.Cos(radians);
matrix.m[0, 0] = fCos; matrix.m[0, 1] = -fSin; matrix.m[0, 2] = 0.0f; matrix.m[0, 3] = 0.0f;
matrix.m[1, 0] = fSin; matrix.m[1, 1] = fCos; matrix.m[1, 2] = 0.0f; matrix.m[1, 3] = 0.0f;
matrix.m[2, 0] = 0.0f; matrix.m[2, 1] = 0.0f; matrix.m[2, 2] = 1.0f; matrix.m[2, 3] = 0.0f;
matrix.m[3, 0] = 0.0f; matrix.m[3, 1] = 0.0f; matrix.m[3, 2] = 0.0f; matrix.m[3, 3] = 1.0f;
}
public static VMatrix MatrixMultiply(VMatrix src1, VMatrix src2)
{
VMatrix dst = new VMatrix();
dst.m[0,0] = src1.m[0,0] * src2.m[0,0] + src1.m[0,1] * src2.m[1,0] + src1.m[0,2] * src2.m[2,0] + src1.m[0,3] * src2.m[3,0];
dst.m[0,1] = src1.m[0,0] * src2.m[0,1] + src1.m[0,1] * src2.m[1,1] + src1.m[0,2] * src2.m[2,1] + src1.m[0,3] * src2.m[3,1];
dst.m[0,2] = src1.m[0,0] * src2.m[0,2] + src1.m[0,1] * src2.m[1,2] + src1.m[0,2] * src2.m[2,2] + src1.m[0,3] * src2.m[3,2];
dst.m[0,3] = src1.m[0,0] * src2.m[0,3] + src1.m[0,1] * src2.m[1,3] + src1.m[0,2] * src2.m[2,3] + src1.m[0,3] * src2.m[3,3];
dst.m[1,0] = src1.m[1,0] * src2.m[0,0] + src1.m[1,1] * src2.m[1,0] + src1.m[1,2] * src2.m[2,0] + src1.m[1,3] * src2.m[3,0];
dst.m[1,1] = src1.m[1,0] * src2.m[0,1] + src1.m[1,1] * src2.m[1,1] + src1.m[1,2] * src2.m[2,1] + src1.m[1,3] * src2.m[3,1];
dst.m[1,2] = src1.m[1,0] * src2.m[0,2] + src1.m[1,1] * src2.m[1,2] + src1.m[1,2] * src2.m[2,2] + src1.m[1,3] * src2.m[3,2];
dst.m[1,3] = src1.m[1,0] * src2.m[0,3] + src1.m[1,1] * src2.m[1,3] + src1.m[1,2] * src2.m[2,3] + src1.m[1,3] * src2.m[3,3];
dst.m[2,0] = src1.m[2,0] * src2.m[0,0] + src1.m[2,1] * src2.m[1,0] + src1.m[2,2] * src2.m[2,0] + src1.m[2,3] * src2.m[3,0];
dst.m[2,1] = src1.m[2,0] * src2.m[0,1] + src1.m[2,1] * src2.m[1,1] + src1.m[2,2] * src2.m[2,1] + src1.m[2,3] * src2.m[3,1];
dst.m[2,2] = src1.m[2,0] * src2.m[0,2] + src1.m[2,1] * src2.m[1,2] + src1.m[2,2] * src2.m[2,2] + src1.m[2,3] * src2.m[3,2];
dst.m[2,3] = src1.m[2,0] * src2.m[0,3] + src1.m[2,1] * src2.m[1,3] + src1.m[2,2] * src2.m[2,3] + src1.m[2,3] * src2.m[3,3];
dst.m[3,0] = src1.m[3,0] * src2.m[0,0] + src1.m[3,1] * src2.m[1,0] + src1.m[3,2] * src2.m[2,0] + src1.m[3,3] * src2.m[3,0];
dst.m[3,1] = src1.m[3,0] * src2.m[0,1] + src1.m[3,1] * src2.m[1,1] + src1.m[3,2] * src2.m[2,1] + src1.m[3,3] * src2.m[3,1];
dst.m[3,2] = src1.m[3,0] * src2.m[0,2] + src1.m[3,1] * src2.m[1,2] + src1.m[3,2] * src2.m[2,2] + src1.m[3,3] * src2.m[3,2];
dst.m[3,3] = src1.m[3,0] * src2.m[0,3] + src1.m[3,1] * src2.m[1,3] + src1.m[3,2] * src2.m[2,3] + src1.m[3,3] * src2.m[3,3];
return dst;
}
public Vector4 MatrixGetCol(int nCol)
{
System.Diagnostics.Debug.Assert((nCol >= 0) && (nCol <= 3));
Vector4 vec;
vec.x = m[0,nCol];
vec.y = m[1,nCol];
vec.z = m[2,nCol];
vec.w = m[3,nCol];
return vec;
}
public Vector4 MatrixGetRow(int nRow)
{
System.Diagnostics.Debug.Assert((nRow >= 0) && (nRow <= 3));
Vector4 vec;
vec.x = m[nRow, 0];
vec.y = m[nRow, 1];
vec.z = m[nRow, 2];
vec.w = m[nRow, 3];
return vec;
}
public static VMatrix GetSRTMatrix(Vector2 scale, float rotation, Vector2 center, Vector2 translation)
{
VMatrix mat = new VMatrix();
VMatrix temp = new VMatrix();
MatrixBuildScale(mat, scale.x, scale.y, 1.0f);
MatrixBuildTranslation(temp, -center);
mat = MatrixMultiply(temp, mat);
MatrixBuildRotate(temp, rotation);
mat = MatrixMultiply(temp, mat);
MatrixBuildTranslation(temp, center.x + translation.x, center.y - translation.y, 0.0f);
mat = MatrixMultiply(temp, mat);
return mat;
}
}
}
调用方式:
VMatrix matrix = VMatrix.GetSRTMatrix(scale, -m_cur_rotate, center, translation + translationExtra);
m_CRTTexture.material.SetVector("_SRT0", matrix.MatrixGetRow(0));
m_CRTTexture.material.SetVector("_SRT1", matrix.MatrixGetRow(1));
shader使用:
Properties
{
_SRT0("PatternSRT0", Vector) = (1, 1, 1, 1)
_SRT1("PatternSRT1", Vector) = (1, 1, 1, 1)
}
Pass
{
float4 _SRT0;
float4 _SRT1;
float4 get_pattern_color(float2 uv)
{
float2 uv2;
uv2.x = dot(uv, _SRT0.xy) + _SRT0.w;
uv2.y = dot(uv, _SRT1.xy) + _SRT1.w;
return tex2D(_PatternTexture, uv2);
}
}
感兴趣的可以自己试一试
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持得得之家。
沃梦达教程
本文标题为:unity实现贴图矩阵运算(旋转平移缩放)
基础教程推荐
猜你喜欢
- winform把Office转成PDF文件 2023-06-14
- linux – 如何在Debian Jessie中安装dotnet core sdk 2023-09-26
- C#控制台实现飞行棋小游戏 2023-04-22
- ZooKeeper的安装及部署教程 2023-01-22
- unity实现动态排行榜 2023-04-27
- C# List实现行转列的通用方案 2022-11-02
- C#类和结构详解 2023-05-30
- C# 调用WebService的方法 2023-03-09
- 一个读写csv文件的C#类 2022-11-06
- C# windows语音识别与朗读实例 2023-04-27