MySQL索引最左匹配原则实例详解 目录 简介 准备 理论详解 聚集索引和非聚集索引 回表查询 索引覆盖 最左匹配原则 详细规则 补充:为什么要使用联合索引 总结 简介 这篇文章的初衷是很多文章都告诉你最左匹配原则,却没有告诉你,实际场景下它到
目录
- 简介
- 准备
- 理论详解
- 聚集索引和非聚集索引
- 回表查询
- 索引覆盖
- 最左匹配原则
- 详细规则
- 补充:为什么要使用联合索引
- 总结
简介
这篇文章的初衷是很多文章都告诉你最左匹配原则,却没有告诉你,实际场景下它到底是如何工作的,本文就是为了阐述清这个问题。
准备
为了方面后续的说明,我们首先建立一个如下的表(MySQL5.7),表中共有5个字段(a
、b
、c
、d
、e
),其中a
为主键,有一个由b
,c
,d
组成的联合索引,存储引擎为InnoDB,插入三条测试数据。强烈建议自己在MySQL中尝试本文的所有语句。
CREATE TABLE `test` (
`a` int NOT NULL AUTO_INCREMENT,
`b` int DEFAULT NULL,
`c` int DEFAULT NULL,
`d` int DEFAULT NULL,
`e` int DEFAULT NULL,
PRIMARY KEY(`a`),
KEY `idx_abc` (`b`,`c`,`d`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;
INSERT INTO test(`a`, `b`, `c`, `d`, `e`) VALUES (1, 2, 3, 4, 5);
INSERT INTO test(`a`, `b`, `c`, `d`, `e`) VALUES (2, 2, 3, 4, 5);
INSERT INTO test(`a`, `b`, `c`, `d`, `e`) VALUES (3, 2, 3, 4, 5);
这时候,我们如果执行下面这个SQL语句,你觉得会走索引吗?
SELECT b, c, d FROM test WHERE d = 2;
如果你按照最左匹配原则(简述为在联合索引中,从最左边的字段开始匹配,若条件中字段在联合索引中符合从左到右的顺序则走索引,否则不走,可以简单理解为(a, b, c)的联合索引相当于创建了a索引、(a, b)索引和(a, b, c)索引),这句显然是不符合这个规则的,它走不了索引,但是我们用EXPLAIN
语句分析,会发现一个很有趣的现象,它的输出如下是使用了索引的。
这就很奇怪了,最左匹配原则失效了吗?事实上,并没有,我们一步步来分析。
理论详解
由于现在基本上以InnoDB引擎为主,我们以InnoDB为例进行主要说明。
聚集索引和非聚集索引
MySQL底层使用B+树来存储索引,数据均存在叶子节点上。对于InnoDB而言,主键索引和行记录时存储在一起的,因此叫做聚集索引(clustered index)。除了聚集索引,其他所有都叫做非聚集索引(secondary index),包括普通索引、唯一索引等。
在InnoDB中,只存在一个聚集索引:
- 若表存在主键,则主键索引就是聚集索引;
- 若表不存在主键,则会把第一个非空的唯一索引作为聚集索引;
- 否则,会隐式定义一个rowid作为聚集索引。
我们以下图为例,假设现在有一个表,存在id、name、age三个字段,其中id为主键,因此id为聚集索引,name建立索引为非聚集索引。关于id和name的索引,有如下的B+树,可以看到,聚集索引的叶子节点存储的是主键和行记录,非聚集索引的叶子节点存储的是主键。
回表查询
从上面的索引存储结构来看,我们可以看到,在主键索引树上,通过主键就可以一次性查出我们所需要的数据,速度很快。这很直观,因为主键就和行记录存储在一起,定位到了主键就定位到了所要找的包含所有字段的记录。
但是对于非聚集索引,如上面的右图,我们可以看到,需要先根据name所在的索引树找到对应主键,然后通过主键索引树查询到所要的记录,这个过程叫做回表查询。
索引覆盖
上面的回表查询无疑会降低查询的效率,那么有没有办法让它不回表呢?这就是索引覆盖。所谓索引覆盖,就是说,在使用这个索引查询时,使它的索引树的叶子节点上的数据可以覆盖你查询的所有字段,就可以避免回表了。我们回到一开始的例子,我们建立的(b,c,d)
的联合索引,因此当我们查询的字段在b、c、d中的时候,就不会回表,只需要查看一次索引树,这就是索引覆盖。
最左匹配原则
指的是联合索引中,优先走最左边列的索引。对于多个字段的联合索引,也同理。如 index(a,b,c) 联合索引,则相当于创建了 a 单列索引,(a,b)联合索引,和(a,b,c)联合索引。
我们可以执行下面的几条语句验证一下这个原则。
EXPLAIN SELECT * FROM test WHERE b = 1;
EXPLAIN SELECT * FROM test WHERE b = 1 and c = 2;
EXPLAIN SELECT * FROM test WHERE b = 1 and c = 2 and d = 3;
接着,我们尝试一条不符合最左原则的查询,它也如图预期一样,走了全表扫描。
EXPLAIN SELECT * FROM test WHERE d = 3;
详细规则
我们先来看下面两个语句,他们的输出如下。
EXPLAIN SELECT b, c from test WHERE b = 1 and c = 1;
EXPLAIN SELECT b, d from test WHERE d = 1;
id|select_type|table|partitions|type|possible_keys|key |key_len|ref |rows|filtered|Extra |
--+-----------+-----+----------+----+-------------+-------+-------+-----------+----+--------+-----------+
1|SIMPLE |test | |ref |idx_bcd |idx_bcd|10 |const,const| 1| 100.0|Using index|
i
d|select_type|table|partitions|type |possible_keys|key |key_len|ref|rows|filtered|Extra |
--+-----------+-----+----------+-----+-------------+-------+-------+---+----+--------+------------------------+
1|SIMPLE |test | |index|idx_bcd |idx_bcd|15 | | 3| 33.33|Using where; Using index|
显然第一条语句是符合最左匹配的,因此type为ref
,但是第二条并不符合最左匹配,但是也不是全表扫描,这是因为此时这表示扫描整个索引树。
具体来看,index
代表的是会对整个索引树进行扫描,如例子中的,列 d
,就会导致扫描整个索引树。ref
代表 mysql 会根据特定的算法查找索引,这样的效率比 index 全扫描要高一些。但是,它对索引结构有一定的要求,索引字段必须是有序的。而联合索引就符合这样的要求,联合索引内部就是有序的,你可以理解为order by b,c,d
这种排序规则,先根据字段b排序,再根据字段c排序,以此类推。这也解释了,为什么需要遵守最左匹配原则,当最左列有序才能保证右边的索引列有序。
因此,我们总结最后的原则为,若符合最左覆盖原则,则走ref这种索引;若不符合最左匹配原则,但是符合覆盖索引(index),就可以扫描整个索引树,从而找到覆盖索引对应的列,避免回表;若不符合最左匹配原则,也不符合覆盖索引(如本例的select *
),则需要扫描整个索引树,并且回表查询行记录,此时,查询优化器认为这样两次查找索引树,还不如全表扫描来得快(因为联合索引此时不符合最左匹配原则,要不普通索引查询慢得多),因此,此时会走全表扫描。
补充:为什么要使用联合索引
减少开销。建一个联合索引(col1,col2,col3),实际相当于建了(col1),(col1,col2),(col1,col2,col3)三个索引。每多一个索引,都会增加写操作的开销和磁盘空间的开销。对于大量数据的表,使用联合索引会大大的减少开销!
覆盖索引。对联合索引(col1,col2,col3),如果有如下的sql: select col1,col2,col3 from test where col1=1 and col2=2。那么MySQL可以直接通过遍历索引取得数据,而无需回表,这减少了很多的随机io操作。减少io操作,特别的随机io其实是dba主要的优化策略。所以,在真正的实际应用中,覆盖索引是主要的提升性能的优化手段之一。
效率高。索引列越多,通过索引筛选出的数据越少。有1000W条数据的表,有如下sql:select from table where col1=1 and col2=2 and col3=3,假设假设每个条件可以筛选出10%的数据,如果只有单值索引,那么通过该索引能筛选出1000W10%=100w条数据,然后再回表从100w条数据中找到符合col2=2 and col3= 3的数据,然后再排序,再分页;如果是联合索引,通过索引筛选出1000w10% 10% *10%=1w,效率提升可想而知!
总结
到此这篇关于MySQL索引最左匹配原则的文章就介绍到这了,更多相关MySQL索引最左匹配原则内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
本文标题为:MySQL索引最左匹配原则实例详解
基础教程推荐
- python中pandas库的iloc函数用法解析 2023-07-28
- Mysql主从三种复制模式(异步复制,半同步复制,组复 2022-09-01
- 如何将excel表格数据导入postgresql数据库 2023-07-20
- Mysql查询所有表和字段信息的方法 2023-07-26
- 【Redis】数据持久化 2023-09-12
- Python常见库matplotlib学习笔记之多个子图绘图 2023-07-27
- Sql Server Management Studio连接Mysql的实现步骤 2023-07-29
- 关于MySQL中explain工具的使用 2023-07-27
- Redis如何实现延迟队列 2023-07-13
- SQLServer 清理日志的实现 2023-07-29