这篇文章主要介绍了R语言归一化处理实例讲解,文中内容讲解的很清晰,有感兴趣的同学可以学习下
归一化就是要把你需要处理的数据经过处理后(通过某种算法)限制在你需要的一定范围内。首先归一化是为了后面数据处理的方便,其次是保正程序运行时收敛加快。
R语言中的归一化函数:scale
数据归一化包括数据的中心化和数据的标准化。
1. 数据的中心化
所谓数据的中心化是指数据集中的各项数据减去数据集的均值。
例如有数据集1, 2, 3, 6, 3,其均值为3,那么中心化之后的数据集为1-3,2-3,3-3,6-3,3-3,即:-2,-1,0,3,0
2. 数据的标准化
所谓数据的标准化是指中心化之后的数据在除以数据集的标准差,即数据集中的各项数据减去数据集的均值再除以数据集的标准差。
例如有数据集1, 2, 3, 6, 3,其均值为3,其标准差为1.87,那么标准化之后的数据集为(1-3)/1.87,(2-3)/1.87,(3-3)/1.87,(6-3)/1.87,(3-3)/1.87,即:-1.069,-0.535,0,1.604,0
数据中心化和标准化的意义是一样的,为了消除量纲对数据结构的影响。在R语言中可以使用scale方法来对数据进行中心化和标准化。
scale函数是将一组数进行处理,默认情况下是将一组数的每个数都减去这组数的平均值后再除以这组数的标准差。
其中有两个参数:
center=TRUE,默认的,是将一组数中每个数减去平均值,若为false,则不减平均值;
scale=TRUE,默认的,是将一组数中每个数除以标准差。
scale默认情况下:将一组数的每个数都减去这组数的平均值后再除以这组数的标准差。
> scale(ss)
[,1]
[1,] -1.3805850
[2,] -0.6371931
[3,] 0.1061988
[4,] 0.8495908
[5,] 1.5929827
[6,] 0.1061988
[7,] -0.6371931
attr(,"scaled:center")
[1] 2.857143
attr(,"scaled:scale")
[1] 1.345185
到此这篇关于R语言归一化处理实例讲解的文章就介绍到这了,更多相关R语言归一化处理内容请搜索编程学习网以前的文章希望大家以后多多支持编程学习网!
本文标题为:R语言归一化处理实例讲解


基础教程推荐
- R语言基于Keras的MLP神经网络及环境搭建 2022-12-10
- R语言数可视化Split violin plot小提琴图绘制方法 2022-12-10
- swift版webview加载网页进度条效果 2023-07-05
- R语言-如何将科学计数法表示的数字转化为文本 2022-11-23
- asm基础——汇编指令之in/out指令 2023-07-06
- Go web部署报错panic: listen tcp xxxxxxx:8090: bind: cannot assign requested address 2023-09-05
- R包ggtreeExtra绘制进化树 2022-12-14
- UEFI开发基础HII代码示例 2023-07-07
- ruby-on-rails-使用Nginx的Rails的多阶段环境 2023-09-21
- swift 字符串String的使用方法 2023-07-05