SQL Server pivot vs. multiple join(SQL Server 数据透视与多连接)
问题描述
在 SQL Server 2005 中使用哪个更有效:PIVOT 或 MULTIPLE JOIN?
What is more efficient to use in SQL Server 2005: PIVOT or MULTIPLE JOIN?
例如,我使用两个连接得到这个查询:
For example, I got this query using two joins:
SELECT p.name, pc1.code as code1, pc2.code as code2
FROM product p
INNER JOIN product_code pc1
ON p.product_id=pc1.product_id AND pc1.type=1
INNER JOIN product_code pc2
ON p.product_id=pc2.product_id AND pc2.type=2
我可以使用 PIVOT 做同样的事情:
I can do the same using PIVOT:
SELECT name, [1] as code1, [2] as code2
FROM (
SELECT p.name, pc.type, pc.code
FROM product p
INNER JOIN product_code pc
ON p.product_id=pc.product_id
WHERE pc.type IN (1,2)) prods1
PIVOT(
MAX(code) FOR type IN ([1], [2])) prods2
哪个更有效?
推荐答案
答案当然是视情况而定",但基于对此的测试...
The answer will of course be "it depends" but based on testing this end...
假设
- 100 万件产品
product
在product_id
上有聚集索引- 大多数(如果不是全部)产品在
product_code
表中都有相应的信息 product_code
上存在两个查询的理想索引.
- 1 million products
product
has a clustered index onproduct_id
- Most (if not all) products have corresponding information in the
product_code
table - Ideal indexes present on
product_code
for both queries.
PIVOT
版本理想情况下需要一个索引 product_code(product_id, type) INCLUDE (code)
而 JOIN
版本理想情况下需要一个索引 <代码>product_code(type,product_id) INCLUDE (code)
The PIVOT
version ideally needs an index product_code(product_id, type) INCLUDE (code)
whereas the JOIN
version ideally needs an index product_code(type,product_id) INCLUDE (code)
如果这些都到位,则给出以下计划
If these are in place giving the plans below
那么 JOIN
版本效率更高.
then the JOIN
version is more efficient.
如果type 1
和type 2
是表中唯一的types
,则PIVOT
版本在读取次数方面略有优势,因为它不必两次查找 product_code
,但这远远超过了流聚合运算符的额外开销
In the case that type 1
and type 2
are the only types
in the table then the PIVOT
version slightly has the edge in terms of number of reads as it doesn't have to seek into product_code
twice but that is more than outweighed by the additional overhead of the stream aggregate operator
Table 'product_code'. Scan count 1, logical reads 10467
Table 'product'. Scan count 1, logical reads 4750
CPU time = 3297 ms, elapsed time = 3260 ms.
加入
Table 'product_code'. Scan count 2, logical reads 10471
Table 'product'. Scan count 1, logical reads 4750
CPU time = 1906 ms, elapsed time = 1866 ms.
如果除了 1
和 2
之外还有额外的 type
记录,JOIN
版本将增加其优势它只是对 type,product_id
索引的相关部分进行合并连接,而 PIVOT
计划使用 product_id, type
,因此必须扫描在与 1
和 2
行混合的附加 type
行上.
If there are additional type
records other than 1
and 2
the JOIN
version will increase its advantage as it just does merge joins on the relevant sections of the type,product_id
index whereas the PIVOT
plan uses product_id, type
and so would have to scan over the additional type
rows that are intermingled with the 1
and 2
rows.
这篇关于SQL Server 数据透视与多连接的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:SQL Server 数据透视与多连接
基础教程推荐
- SQL Server:只有 GROUP BY 中的最后一个条目 2021-01-01
- 如何在 SQL Server 的嵌套过程中处理事务? 2021-01-01
- SQL Server 2016更改对象所有者 2022-01-01
- 将数据从 MS SQL 迁移到 PostgreSQL? 2022-01-01
- 无法在 ubuntu 中启动 mysql 服务器 2021-01-01
- 使用pyodbc“不安全"的Python多处理和数据库访问? 2022-01-01
- Sql Server 字符串到日期的转换 2021-01-01
- ERROR 2006 (HY000): MySQL 服务器已经消失 2021-01-01
- SQL Server 中单行 MERGE/upsert 的语法 2021-01-01
- 在 VB.NET 中更新 SQL Server DateTime 列 2021-01-01