How to load existing db file to memory in Python sqlite3?(如何在 Python sqlite3 中将现有的 db 文件加载到内存中?)
问题描述
我有一个现有的 sqlite3
db 文件,我需要对其进行一些广泛的计算.从文件中进行计算非常缓慢,而且由于文件不大(~10 MB
),因此将其加载到内存中应该没有问题.
I have an existing sqlite3
db file, on which I need to make some extensive calculations. Doing the calculations from the file is painfully slow, and as the file is not large (~10 MB
), so there should be no problem to load it into memory.
是否有一种 Pythonic 的方法可以将现有文件加载到内存中以加快计算速度?
Is there a Pythonic way to load the existing file into memory in order to speed up the calculations?
推荐答案
这是我为我的 Flask 应用程序编写的代码片段:
Here is the snippet that I wrote for my flask application:
import sqlite3
from io import StringIO
def init_sqlite_db(app):
# Read database to tempfile
con = sqlite3.connect(app.config['SQLITE_DATABASE'])
tempfile = StringIO()
for line in con.iterdump():
tempfile.write('%s
' % line)
con.close()
tempfile.seek(0)
# Create a database in memory and import from tempfile
app.sqlite = sqlite3.connect(":memory:")
app.sqlite.cursor().executescript(tempfile.read())
app.sqlite.commit()
app.sqlite.row_factory = sqlite3.Row
这篇关于如何在 Python sqlite3 中将现有的 db 文件加载到内存中?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:如何在 Python sqlite3 中将现有的 db 文件加载到内存中?
基础教程推荐
- 如何在 SQL Server 的嵌套过程中处理事务? 2021-01-01
- Sql Server 字符串到日期的转换 2021-01-01
- 使用pyodbc“不安全"的Python多处理和数据库访问? 2022-01-01
- SQL Server:只有 GROUP BY 中的最后一个条目 2021-01-01
- SQL Server 2016更改对象所有者 2022-01-01
- ERROR 2006 (HY000): MySQL 服务器已经消失 2021-01-01
- 无法在 ubuntu 中启动 mysql 服务器 2021-01-01
- SQL Server 中单行 MERGE/upsert 的语法 2021-01-01
- 在 VB.NET 中更新 SQL Server DateTime 列 2021-01-01
- 将数据从 MS SQL 迁移到 PostgreSQL? 2022-01-01