正在使用--preload初始化DaskWorker中的全局任务模块?

Initializing task module global in dask worker using --preload?(正在使用--preload初始化DaskWorker中的全局任务模块?)

本文介绍了正在使用--preload初始化DaskWorker中的全局任务模块?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我试图实现类似于这些问题(Initializing state on dask-distributed workers,Setting up Dask worker with variable)的内容,其中我有一个(相对)大的模型,我希望在接受需要该模型的任务的工作线程子集上预初始化该模型。理想情况下,我甚至不希望客户端计算机具有该模型。

在发现这些问题之前,我最初的尝试是在共享模块worker_task.model中定义delayed任务,并在工作程序的--preload脚本中为该任务分配一个模块全局变量(例如worker_tasks.model.model)以供该任务使用;然而,由于某种原因,这并不起作用-该变量在预加载脚本中设置,但在调用该任务时仍为None

init_Model_worker.py:

import logging
from uuid import uuid4

from worker_tasks import model


def dask_setup(worker):
    model.model = f'<mock model {uuid4()}>'

    logger = logging.getLogger('distributed')
    logger.warning(f'model = {model.model}')

worker_tasks/model.py:

import logging
import random
from time import sleep
from uuid import uuid4

import dask

model = None


@dask.delayed
def compute_clinical(inp):        
    if model is None:
        raise RuntimeError('Model not initialized.')

    sleep(random.uniform(3, 17))

    return {
        'result': random.choice((True, False)),
        'confidence': random.uniform(0, 1)
        }

这是我启动它并将某些内容提交给计划程序时的工作日志:

> dask-worker --preload init_model_worker.py tcp://scheduler:8786 --name model-worker
distributed.utils - INFO - Reload module init_model_worker from .py file                                  
distributed.nanny - INFO -         Start Nanny at: 'tcp://172.28.0.4:41743'                         
distributed.diskutils - INFO - Found stale lock file and directory '/worker-epptq9sh', purging      
distributed.utils - INFO - Reload module init_model_worker from .py file                                  
distributed - WARNING - model = <mock model faa41af0-d925-46ef-91c9-086093d37c71>                   
distributed.worker - INFO -       Start worker at:     tcp://172.28.0.4:37973                       
distributed.worker - INFO -          Listening to:     tcp://172.28.0.4:37973                       
distributed.worker - INFO -              nanny at:           172.28.0.4:41743                       
distributed.worker - INFO -              bokeh at:           172.28.0.4:37766                       
distributed.worker - INFO - Waiting to connect to:       tcp://scheduler:8786                       
distributed.worker - INFO - -------------------------------------------------                       
distributed.worker - INFO -               Threads:                          4                       
distributed.worker - INFO -                Memory:                    1.93 GB                       
distributed.worker - INFO -       Local Directory:           /worker-mhozo9ru                       
distributed.worker - INFO - -------------------------------------------------                       
distributed.worker - INFO -         Registered to:       tcp://scheduler:8786                       
distributed.worker - INFO - -------------------------------------------------                       
distributed.core - INFO - Starting established connection                                           
distributed.worker - WARNING -  Compute Failed                                                      
Function:  compute_clinical                                                                         
args:      ('mock')                                                                                 
kwargs:    {}                                                                                       
Exception: RuntimeError('Model not initialized.')                                                   

您可以看到,重新加载预加载脚本后,model<mock model faa41af0-d925-46ef-91c9-086093d37c71>;但当我尝试从任务中调用它时,得到None

我将尝试根据对其他问题的回答来实施解决方案,但我有几个与Worker预加载相关的问题:

  1. 为什么在预加载脚本中分配任务后,调用任务时模型None会出现?
  2. 是否一般建议避免在Worker--preload脚本中执行此类操作?从客户端调用工作进程状态的初始化是否更好?如果是,为什么

推荐答案

我怀疑模型变量会立即绑定到您的函数中,但是它会序列化函数。您可以尝试执行以下操作:

@dask.delayed
def compute_clinical(inp):       
    from worker_tasks.model import model

    if model is None:
        raise RuntimeError('Model not initialized.')

或者,与其将变量分配给全局模块作用域(这在Python中可能很难理解),不如尝试将其分配给Worker本身。

from dask.distributed import get_worker

def dask_setup(worker):
    worker.model = f'<mock model {uuid4()}>'

@dask.delayed
def compute_clinical(inp):       
    if get_worker().model is None:
        raise RuntimeError('Model not initialized.')

这篇关于正在使用--preload初始化DaskWorker中的全局任务模块?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本文标题为:正在使用--preload初始化DaskWorker中的全局任务模块?

基础教程推荐