Scattering data to dask cluster workers: unknown address scheme #39;gateway#39;(将数据分散到任务集群工作进程:未知地址方案#39;网关#39;)
本文介绍了将数据分散到任务集群工作进程:未知地址方案';网关';的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我正在遵循the accepted answer to this SO question上找到的代码(&q;块,然后是散布部分),但在尝试将 pandas 散布给工作人员时遇到奇怪的错误。DataFrame。
如果重要的话,我正在使用jupyter笔记本电脑。
我不确定此错误是什么意思,它非常隐晦,因此如果有任何帮助,我们将不胜感激。
from dask_gateway import Gateway
import dask.dataframe as dd
import dask
gateway = Gateway()
options = gateway.cluster_options()
cluster = gateway.new_cluster(cluster_options=options)
cluster.scale(10)
client = cluster.get_client()
X_train = ... # build pandas.DataFrame
x = dd.from_pandas(X_train, npartitions=10)
x = x.persist(get=dask.threaded.get) # chunk locally
futures = client.scatter(dict(x.dask)) # scatter chunks
x.dask = x
---------------------------------------------------------------------------
Exception Traceback (most recent call last)
/tmp/ipykernel_567/3586545525.py in <module>
1 x = dd.from_pandas(X_train, npartitions=10)
2 x = x.persist(get=dask.threaded.get) # chunk locally
----> 3 futures = client.scatter(dict(x.dask)) # scatter chunks
4 x.dask = x
/srv/conda/envs/notebook/lib/python3.9/site-packages/distributed/client.py in scatter(self, data, workers, broadcast, direct, hash, timeout, asynchronous)
2182 else:
2183 local_worker = None
-> 2184 return self.sync(
2185 self._scatter,
2186 data,
/srv/conda/envs/notebook/lib/python3.9/site-packages/distributed/client.py in sync(self, func, asynchronous, callback_timeout, *args, **kwargs)
866 return future
867 else:
--> 868 return sync(
869 self.loop, func, *args, callback_timeout=callback_timeout, **kwargs
870 )
/srv/conda/envs/notebook/lib/python3.9/site-packages/distributed/utils.py in sync(loop, func, callback_timeout, *args, **kwargs)
330 if error[0]:
331 typ, exc, tb = error[0]
--> 332 raise exc.with_traceback(tb)
333 else:
334 return result[0]
/srv/conda/envs/notebook/lib/python3.9/site-packages/distributed/utils.py in f()
313 if callback_timeout is not None:
314 future = asyncio.wait_for(future, callback_timeout)
--> 315 result[0] = yield future
316 except Exception:
317 error[0] = sys.exc_info()
/srv/conda/envs/notebook/lib/python3.9/site-packages/tornado/gen.py in run(self)
760
761 try:
--> 762 value = future.result()
763 except Exception:
764 exc_info = sys.exc_info()
/srv/conda/envs/notebook/lib/python3.9/site-packages/distributed/client.py in _scatter(self, data, workers, broadcast, direct, local_worker, timeout, hash)
2004 isinstance(k, (bytes, str)) for k in data
2005 ):
-> 2006 d = await self._scatter(keymap(stringify, data), workers, broadcast)
2007 return {k: d[stringify(k)] for k in data}
2008
/srv/conda/envs/notebook/lib/python3.9/site-packages/distributed/client.py in _scatter(self, data, workers, broadcast, direct, local_worker, timeout, hash)
2073 )
2074 else:
-> 2075 await self.scheduler.scatter(
2076 data=data2,
2077 workers=workers,
/srv/conda/envs/notebook/lib/python3.9/site-packages/distributed/core.py in send_recv_from_rpc(**kwargs)
893 name, comm.name = comm.name, "ConnectionPool." + key
894 try:
--> 895 result = await send_recv(comm=comm, op=key, **kwargs)
896 finally:
897 self.pool.reuse(self.addr, comm)
/srv/conda/envs/notebook/lib/python3.9/site-packages/distributed/core.py in send_recv(comm, reply, serializers, deserializers, **kwargs)
686 if comm.deserialize:
687 typ, exc, tb = clean_exception(**response)
--> 688 raise exc.with_traceback(tb)
689 else:
690 raise Exception(response["exception_text"])
/srv/conda/envs/notebook/lib/python3.9/site-packages/distributed/core.py in handle_comm()
528 result = asyncio.ensure_future(result)
529 self._ongoing_coroutines.add(result)
--> 530 result = await result
531 except (CommClosedError, CancelledError):
532 if self.status in (Status.running, Status.paused):
/srv/conda/envs/notebook/lib/python3.9/site-packages/distributed/scheduler.py in scatter()
5795 assert isinstance(data, dict)
5796
-> 5797 keys, who_has, nbytes = await scatter_to_workers(
5798 nthreads, data, rpc=self.rpc, report=False
5799 )
/srv/conda/envs/notebook/lib/python3.9/site-packages/distributed/utils_comm.py in scatter_to_workers()
143 rpcs = {addr: rpc(addr) for addr in d}
144 try:
--> 145 out = await All(
146 [
147 rpcs[address].update_data(
/srv/conda/envs/notebook/lib/python3.9/site-packages/distributed/utils.py in All()
214 while not tasks.done():
215 try:
--> 216 result = await tasks.next()
217 except Exception:
218
/srv/conda/envs/notebook/lib/python3.9/site-packages/distributed/core.py in send_recv_from_rpc()
893 name, comm.name = comm.name, "ConnectionPool." + key
894 try:
--> 895 result = await send_recv(comm=comm, op=key, **kwargs)
896 finally:
897 self.pool.reuse(self.addr, comm)
/srv/conda/envs/notebook/lib/python3.9/site-packages/distributed/core.py in send_recv()
688 raise exc.with_traceback(tb)
689 else:
--> 690 raise Exception(response["exception_text"])
691 return response
692
Exception: ValueError("unknown address scheme 'gateway' (known schemes: ['inproc', 'tcp', 'tls', 'ucx', 'ws', 'wss'])")
推荐答案
dd.from_pandas()
在内部执行此操作,因此您不必再手动执行此操作。您可以直接在x
上使用Dask DataFrame接口,计算应该会自动在您的集群上运行。:)
x.dask
现在引用";高级图形";(最近添加的功能),而不是低级图形。DaskGateway使用自己的URL方案,我猜它无法与这种旧的Dask语法正确连接。
还要注意,不再推荐混合调度程序(如答案中所述)。
这篇关于将数据分散到任务集群工作进程:未知地址方案';网关';的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
沃梦达教程
本文标题为:将数据分散到任务集群工作进程:未知地址方案';网关';
基础教程推荐
猜你喜欢
- 如何在 Python 中检测文件是否为二进制(非文本)文 2022-01-01
- 使 Python 脚本在 Windows 上运行而不指定“.py";延期 2022-01-01
- 将 YAML 文件转换为 python dict 2022-01-01
- Python 的 List 是如何实现的? 2022-01-01
- 合并具有多索引的两个数据帧 2022-01-01
- 哪些 Python 包提供独立的事件系统? 2022-01-01
- 使用Python匹配Stata加权xtil命令的确定方法? 2022-01-01
- 如何在Python中绘制多元函数? 2022-01-01
- 使用 Google App Engine (Python) 将文件上传到 Google Cloud Storage 2022-01-01
- 症状类型错误:无法确定关系的真值 2022-01-01