欢迎转载,转载请注明出处,徽沪一郎。概要本文就standalone部署方式下的容错性问题做比较细致的分析,主要回答standalone部署方式下的包含哪些主要节点,当某一类节点出现问题时,系统是如何处理的。Standalone部署...
欢迎转载,转载请注明出处,徽沪一郎。
概要
本文就standalone部署方式下的容错性问题做比较细致的分析,主要回答standalone部署方式下的包含哪些主要节点,当某一类节点出现问题时,系统是如何处理的。
Standalone部署的节点组成
介绍Spark的资料中对于RDD这个概念涉及的比较多,但对于RDD如何运行起来,如何对应到进程和线程的,着墨的不是很多。
在实际的生产环境中,Spark总是会以集群的方式进行运行的,其中standalone的部署方式是所有集群方式中最为精简的一种,另外是Mesos和YARN,要理解其内部运行机理,显然要花更多的时间才能了解清楚。
standalone cluster的组成
standalone集群由三个不同级别的节点组成,分别是
- Master 主控节点,可以类比为董事长或总舵主,在整个集群之中,最多只有一个Master处在Active状态
- Worker 工作节点 ,这个是manager,是分舵主, 在整个集群中,可以有多个worker,如果worker为零,什么事也做不了
- Executor 干苦力活的,直接受worker掌控,一个worker可以启动多个executor,启动的个数受限于机器中的cpu核数
这三种不同类型的节点各自运行于自己的JVM进程之中。
Driver Application
提交到standalone集群的应用程序称之为Driver Applicaton。
Standalone集群启动及任务提交过程详解
上图总结了正常情况下Standalone集群的启动以及应用提交时,各节点之间有哪些消息交互。下面分集群启动和应用提交两个过程来作详细说明。
集群启动过程
正常启动过程如下所述
step 1: 启动master
$SPARK_HOME/sbin/start-master.sh
step 2: 启动worker
./bin/spark-class org.apache.spark.deploy.worker.Worker spark://localhost:7077
worker启动之后,会做两件事情
- 将自己注册到Master, RegisterWorker
- 定期发送心跳消息给Master
任务提交过程
step 1: 提交application
利用如下指令来启动spark-shell
MASTER=spark://127.0.0.1:7077 $SPARK_HOME/bin/spark-shell
运行spark-shell时,会向Master发送RegisterApplication请求
日志位置: master运行产生的日志在$SPARK_HOME/logs目录下
step 2: Master处理RegisterApplication的请求之后
收到RegisterApplication请求之后,Mastet会做如下处理
- 如果有worker已经注册上来,发送LaunchExecutor指令给相应worker
- 如果没有,则什么事也不做
step 3: 启动Executor
Worker在收到LaunchExecutor指令之后,会启动Executor进程
step 4: 注册Executor
启动的Executor进程会根据启动时的入参,将自己注册到Driver中的SchedulerBackend
日志位置: executor的运行日志在$SPARK_HOME/work目录下
step 5: 运行Task
SchedulerBackend收到Executor的注册消息之后,会将提交到的Spark Job分解为多个具体的Task,然后通过LaunchTask指令将这些Task分散到各个Executor上真正的运行
如果在调用runJob的时候,没有任何的Executor注册到SchedulerBackend,相应的处理逻辑是什么呢?
- SchedulerBackend会将Task存储在TaskManager中
- 一旦有Executor注册上来,就将TaskManager管理的尚未运行的task提交到executor中
- 如果有多个job处于pending状态,默认调度策略是FIFO,即先提交的先运行
测试步骤
- 启动Master
- 启动spark-shell
- 执行 sc.textFile("README.md").count
- 启动worker
- 注意worker启动之后,spark-shell中打印出来的日志消息
Job执行结束
任务运行结束时,会将相应的Executor停掉。
可以做如下的试验
- 停止spark-shell
- 利用ps -ef|grep -i java查看java进程,可以发现CoarseGrainedExecutorBackend进程已经退出
小结
通过上面的控制消息原语之间的先后顺序可以看出
- Master和worker进程必须显式启动
- executor是被worker隐式的带起
- 集群的启动顺序
- Master必须先于其它节点启动
- worker和driver哪个先启动,无所谓
- 但driver提交的job只有在有相应的worker注册到Master之后才可以被真正的执行
异常场景分析
上面说明的是正常情况下,各节点的消息分发细节。那么如果在运行中,集群中的某些节点出现了问题,整个集群是否还能够正常处理Application中的任务呢?
异常分析1: worker异常退出
在Spark运行过程中,经常碰到的问题就是worker异常退出,当worker退出时,整个集群会有哪些故事发生呢? 请看下面的具体描述
- worker异常退出,比如说有意识的通过kill指令将worker杀死
- worker在退出之前,会将自己所管控的所有小弟executor全干掉
- worker需要定期向master改善心跳消息的,现在worker进程都已经玩完了,哪有心跳消息,所以Master会在超时处理中意识到有一个“分舵”离开了
- Master非常伤心,伤心的Master将情况汇报给了相应的Driver
- Driver通过两方面确认分配给自己的Executor不幸离开了,一是Master发送过来的通知,二是Driver没有在规定时间内收到Executor的StatusUpdate,于是Driver会将注册的Executor移除
后果分析
worker异常退出会带来哪些影响
- executor退出导致提交的task无法正常结束,会被再一次提交运行
- 如果所有的worker都异常退出,则整个集群不可用
- 需要有相应的程序来重启worker进程,比如使用supervisord或runit
测试步骤
- 启动Master
- 启动worker
- 启动spark-shell
- 手工kill掉worker进程
- 用jps或ps -ef|grep -i java来查看启动着的java进程
异常退出的代码处理
定义于ExecutorRunner.scala的start函数
def start() {
workerThread = new Thread("ExecutorRunner for " + fullId) {
override def run() { fetchAndRunExecutor() }
}
workerThread.start()
// Shutdown hook that kills actors on shutdown.
shutdownHook = new Thread() {
override def run() {
killProcess(Some("Worker shutting down"))
}
}
Runtime.getRuntime.addShutdownHook(shutdownHook)
}
killProcess的过程就是停止相应CoarseGrainedExecutorBackend的过程。
worker停止的时候,一定要先将自己启动的Executor停止掉。这是不是很像水浒中宋江的手段,李逵就是这样不明不白的把命给丢了。
小结
需要特别指出的是,当worker在启动Executor的时候,是通过ExecutorRunner来完成的,ExecutorRunner是一个独立的线程,和Executor是一对一的关系,这很重要。Executor作为一个独立的进程在运行,但会受到ExecutorRunner的严密监控。
异常分析2: executor异常退出
Executor作为Standalone集群部署方式下的最底层员工,一旦异常退出,其后果会是什么呢?
- executor异常退出,ExecutorRunner注意到异常,将情况通过ExecutorStateChanged汇报给Master
- Master收到通知之后,非常不高兴,尽然有小弟要跑路,那还了得,要求Executor所属的worker再次启动
- Worker收到LaunchExecutor指令,再次启动executor
作为一名底层员工,想轻易摞挑子不干是不成的。"人在江湖,身不由己“啊。
测试步骤
- 启动Master
- 启动Worker
- 启动spark-shell
- 手工kill掉CoarseGrainedExecutorBackend
fetchAndRunExecutor
fetchAndRunExecutor负责启动具体的Executor,并监控其运行状态,具体代码逻辑如下所示
def fetchAndRunExecutor() {
try {
// Create the executor‘s working directory
val executorDir = new File(workDir, appId + "/" + execId)
if (!executorDir.mkdirs()) {
throw new IOException("Failed to create directory " + executorDir)
}
// Launch the process
val command = getCommandSeq
logInfo("Launch command: " + command.mkString("\"", "\" \"", "\""))
val builder = new ProcessBuilder(command: _*).directory(executorDir)
val env = builder.environment()
for ((key, value) {
logInfo("Runner thread for executor " + fullId + " interrupted")
state = ExecutorState.KILLED
killProcess(None)
}
case e: Exception => {
logError("Error running executor", e)
state = ExecutorState.FAILED
killProcess(Some(e.toString))
}
}
}
异常分析3: master 异常退出
worker和executor异常退出的场景都讲到了,我们剩下最后一种情况了,master挂掉了怎么办?
带头大哥如果不在了,会是什么后果呢?
- worker没有汇报的对象了,也就是如果executor再次跑飞,worker是不会将executor启动起来的,大哥没给指令
- 无法向集群提交新的任务
- 老的任务即便结束了,占用的资源也无法清除,因为资源清除的指令是Master发出的
怎么样,知道后果很严重了吧?别看老大平时不干活,要真的不在,仅凭小弟们是不行的。
Master单点失效问题的解决
那么怎么解决Master单点失效的问题呢?
你说再加一个Master就是了,两个老大。两个老大如果同时具有指挥权,结果也将是灾难性的。设立一个副职人员,当目前的正职挂掉之后,副职接管。也就是同一时刻,有且只有一个active master。
注意不错,如何实现呢?使用zookeeper的ElectLeader功能,效果图如下
配置细节
如何搭建zookeeper集群,这里不再废话,哪天有空的话再整一整,或者可以参考写的storm系列中谈到的zookeeper的集群安装步骤。
假设zookeeper集群已经设置成功,那么如何启动standalone集群中的节点呢?有哪些特别的地方?
conf/spark-env.sh
在conf/spark-env.sh中,为SPARK_DAEMON_JAVA_OPTS添加如下选项
System property | Meaning |
spark.deploy.recoveryMode | Set to ZOOKEEPER to enable standby Master recovery mode (default: NONE). |
spark.deploy.zookeeper.url | The ZooKeeper cluster url (e.g., 192.168.1.100:2181,192.168.1.101:2181). |
spark.deploy.zookeeper.dir | The directory in ZooKeeper to store recovery state (default: /spark). |
设置SPARK_DAEMON_JAVA_OPTS的实际例子
SPARK_DAEMON_JAVA_OPTS="$SPARK_DAEMON_JAVA_OPTS -Dspark.deploy.recoveryMode=ZOOKEEPER"
应用程序启动
应用程序运行的时候,指定多个master地址,用逗号分开,如下所示
MASTER=spark://192.168.100.101:7077,spark://192.168.100.102:7077 bin/spark-shell
小结
Standalone集群部署方式下的容错性分析让我们对于Spark的任务分发过程又有了进一处的认识。前面的篇章从整体上匆匆过了一遍Spark所涉及的知识点,分析的不够深,不够细。
此篇尝试着就某一具体问题做深入的分析。套用书画中的说法,在框架分析的时候,我们可以”大开大合,疏可走马,计白当黑“,在细节分析的时候,又要做到“密不透风,条分缕析,层层递进”。
原文:http://www.cnblogs.com/hseagle/p/3791779.html
本文标题为:Apache Spark源码走读之15 -- Standalone部署模式下的容错性分析
基础教程推荐
- Apache Hudi数据布局黑科技降低一半查询时间 2022-10-06
- 服务器添加git钩子的步骤 2022-12-12
- nginx.conf(centos7 1.14)主配置文件修改 2023-09-23
- centos 7 安装及配置zabbix agent 2023-09-24
- linux之conda环境安装全过程 2023-07-11
- linux下安装apache与php;Apache+PHP+MySQL配置攻略 2023-08-07
- IIS 6 的 PHP 最佳配置方法 2022-09-01
- Apache服务器配置攻略3 2022-09-01
- apache和nginx结合使用 2023-09-10
- 实战Nginx_取代Apache的高性能Web服务器 2023-09-29