C++ 中的 long long int 与 long int 与 int64_t

long long int vs. long int vs. int64_t in C++(C++ 中的 long long int 与 long int 与 int64_t)

本文介绍了C++ 中的 long long int 与 long int 与 int64_t的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我在使用 C++ 类型特征时遇到了一些奇怪的行为,并将我的问题缩小到这个古怪的小问题,我将对此进行大量解释,因为我不想留下任何误解.

I experienced some odd behavior while using C++ type traits and have narrowed my problem down to this quirky little problem for which I will give a ton of explanation since I do not want to leave anything open for misinterpretation.

假设你有一个这样的程序:

Say you have a program like so:

#include <iostream>
#include <cstdint>

template <typename T>
bool is_int64() { return false; }

template <>
bool is_int64<int64_t>() { return true; }

int main()
{
 std::cout << "int:	" << is_int64<int>() << std::endl;
 std::cout << "int64_t:	" << is_int64<int64_t>() << std::endl;
 std::cout << "long int:	" << is_int64<long int>() << std::endl;
 std::cout << "long long int:	" << is_int64<long long int>() << std::endl;

 return 0;
}

在使用 GCC(以及使用 32 位和 64 位 MSVC)的 32 位编译中,程序的输出将是:

In both 32-bit compile with GCC (and with 32- and 64-bit MSVC), the output of the program will be:

int:           0
int64_t:       1
long int:      0
long long int: 1

但是,64 位 GCC 编译产生的程序将输出:

However, the program resulting from a 64-bit GCC compile will output:

int:           0
int64_t:       1
long int:      1
long long int: 0

这很奇怪,因为 long long int 是一个有符号的 64 位整数,并且就所有意图和目的而言,与 long int 相同int64_t 类型,因此逻辑上,int64_tlong intlong long int 将是等效类型 - 使用这些时生成的程序集类型相同.一看 stdint.h 就会告诉我原因:

This is curious, since long long int is a signed 64-bit integer and is, for all intents and purposes, identical to the long int and int64_t types, so logically, int64_t, long int and long long int would be equivalent types - the assembly generated when using these types is identical. One look at stdint.h tells me why:

# if __WORDSIZE == 64
typedef long int  int64_t;
# else
__extension__
typedef long long int  int64_t;
# endif

在 64 位编译中,int64_tlong int,而不是 long long int(显然).

In a 64-bit compile, int64_t is long int, not a long long int (obviously).

解决这种情况非常简单:

The fix for this situation is pretty easy:

#if defined(__GNUC__) && (__WORDSIZE == 64)
template <>
bool is_int64<long long int>() { return true; }
#endif

但这是非常骇人听闻的,并且不能很好地扩展(实体的实际功能,uint64_t 等).所以我的问题是: 有没有办法告诉编译器一个 long long int 也是一个 int64_t,就像 long int 是?

But this is horribly hackish and does not scale well (actual functions of substance, uint64_t, etc). So my question is: Is there a way to tell the compiler that a long long int is the also a int64_t, just like long int is?

我最初的想法是这是不可能的,因为 C/C++ 类型定义的工作方式.没有一种方法可以为编译器指定基本数据类型的类型等效性,因为这是编译器的工作(并且允许这样做可能会破坏很多事情)并且 typedef 只能以一种方式进行.

My initial thoughts are that this is not possible, due to the way C/C++ type definitions work. There is not a way to specify type equivalence of the basic data types to the compiler, since that is the compiler's job (and allowing that could break a lot of things) and typedef only goes one way.

我也不太在意在这里得到答案,因为这是一个超级骗子的边缘案例,我不怀疑任何人会在示例不是精心设计的时候关心(这是否意味着这应该是社区维基?).

I'm also not too concerned with getting an answer here, since this is a super-duper edge case that I do not suspect anyone will ever care about when the examples are not horribly contrived (does that mean this should be community wiki?).

Append:我使用部分模板特化而不是更简单的例子的原因:

Append: The reason why I'm using partial template specialization instead of an easier example like:

void go(int64_t) { }

int main()
{
    long long int x = 2;
    go(x);
    return 0;
}

那个例子仍然可以编译,因为 long long int 可以隐式转换为 int64_t.

is that said example will still compile, since long long int is implicitly convertible to an int64_t.

Append:目前唯一的答案是假设我想知道类型是否为 64 位.我不想误导人们认为我关心这个问题,并且可能应该提供更多关于这个问题表现出来的例子.

Append: The only answer so far assumes that I want to know if a type is 64-bits. I did not want to mislead people into thinking that I care about that and probably should have provided more examples of where this problem manifests itself.

template <typename T>
struct some_type_trait : boost::false_type { };

template <>
struct some_type_trait<int64_t> : boost::true_type { };

在这个例子中,some_type_trait 将是一个 boost::true_type,但 some_type_trait 不会是.虽然这在 C++ 的类型概念中是有道理的,但并不可取.

In this example, some_type_trait<long int> will be a boost::true_type, but some_type_trait<long long int> will not be. While this makes sense in C++'s idea of types, it is not desirable.

另一个例子是使用像 same_type 这样的限定符(这在 C++0x 概念中很常见):

Another example is using a qualifier like same_type (which is pretty common to use in C++0x Concepts):

template <typename T>
void same_type(T, T) { }

void foo()
{
    long int x;
    long long int y;
    same_type(x, y);
}

该示例无法编译,因为 C++(正确地)看到类型不同.g++ 将无法编译并出现如下错误:没有匹配的函数调用 same_type(long int&, long long int&).

That example fails to compile, since C++ (correctly) sees that the types are different. g++ will fail to compile with an error like: no matching function call same_type(long int&, long long int&).

我想强调的是,我理解为什么会发生这种情况,但我正在寻找一种不会强迫我到处重复代码的解决方法.

I would like to stress that I understand why this is happening, but I am looking for a workaround that does not force me to repeat code all over the place.

推荐答案

您无需转到 64 位即可看到此类内容.在常见的 32 位平台上考虑 int32_t.它可能是 typedefintlong,但显然一次只能是两者之一.intlong 当然是不同的类型.

You don't need to go to 64-bit to see something like this. Consider int32_t on common 32-bit platforms. It might be typedef'ed as int or as a long, but obviously only one of the two at a time. int and long are of course distinct types.

不难看出,在 32 位系统上没有使 int == int32_t == long 的变通方法.出于同样的原因,在 64 位系统上没有办法使 long == int64_t == long long.

It's not hard to see that there is no workaround which makes int == int32_t == long on 32-bit systems. For the same reason, there's no way to make long == int64_t == long long on 64-bit systems.

如果可以,对于重载 foo(int)foo(long)foo(long long) 的代码,可能的后果将是相当痛苦的 - 突然他们对同一个重载有两个定义?!

If you could, the possible consequences would be rather painful for code that overloaded foo(int), foo(long) and foo(long long) - suddenly they'd have two definitions for the same overload?!

正确的解决方案是你的模板代码通常不应该依赖于一个精确的类型,而应该依赖于该类型的属性.对于特定情况,整个 same_type 逻辑仍然可以:

The correct solution is that your template code usually should not be relying on a precise type, but on the properties of that type. The whole same_type logic could still be OK for specific cases:

long foo(long x);
std::tr1::disable_if(same_type(int64_t, long), int64_t)::type foo(int64_t);

即,重载 foo(int64_t)完全foo(long) 相同时未定义.

I.e., the overload foo(int64_t) is not defined when it's exactly the same as foo(long).

使用 C++11,我们现在有一个标准的方法来写这个:

[edit] With C++11, we now have a standard way to write this:

long foo(long x);
std::enable_if<!std::is_same<int64_t, long>::value, int64_t>::type foo(int64_t);

或 C++20

long foo(long x);
int64_t foo(int64_t) requires (!std::is_same_v<int64_t, long>);

这篇关于C++ 中的 long long int 与 long int 与 int64_t的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本文标题为:C++ 中的 long long int 与 long int 与 int64_t

基础教程推荐