eigensolver in eigen Library(Eigen图书馆中的Eigensolver)
本文介绍了Eigen图书馆中的Eigensolver的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我想用本征库将[vec,val] = eig(A)
从MatLab翻译成C++,但我达不到同样的结果!
我尝试了eigensolver
、ComplexEigenSolver
和SelfAdjointEigenSolver.
,但都没有给出像eig(A)
这样的结果。
Sample matrices:
Tv(:,:,223) =
0.8648 -1.9658 -0.2785
-1.9658 4.9142 0.8646
-0.2785 0.8646 0.3447
Tv(:,:,224) =
1.9735 -0.4218 1.0790
-0.4218 3.3012 0.1855
1.0790 0.1855 3.7751
Tv(:,:,225) =
2.4948 1.0185 1.1633
1.0185 1.1732 -0.4479
1.1633 -0.4479 4.3289
Tv(:,:,226) =
0.3321 0.0317 0.1617
0.0317 0.0020 -0.0139
0.1617 -0.0139 0.5834
本征:
MatrixXcd vec(3 * n, 3);
VectorXcd val(3);
for (int k = 0; k < n; k++){
EigenSolver<Matrix3d> eig(Tv.block<3, 3>(3 * k, 0));
vec.block<3, 3>(3 * k, 0) = eig.eigenvectors();
cout <<endl << vec.block<3, 3>(3 * k, 0) << endl;
val = eig.eigenvalues();
cout << "val= " << endl << val << endl;
}
//结果
(0.369152,0) (-0.830627,0) (-0.416876,0)
(-0.915125,0) (-0.403106,0) (-0.00717218,0)
(-0.162088,0) (0.384142,0) (-0.908935,0)
val=
(5.86031,0)
(0.0396418,0)
(0.223765,0)
(0.881678,0) (0.204005,0) (0.425472,0)
(0.23084,0) (-0.97292,0) (-0.011858,0)
(-0.411531,0) (-0.108671,0) (0.904894,0)
val=
(1.35945,0)
(3.41031,0)
(4.27996,0)
(0.526896,0) (-0.726801,0) (0.440613,0)
(-0.813164,0) (-0.581899,0) (0.0125466,0)
(-0.247274,0) (0.364902,0) (0.897609,0)
val=
(0.377083,0)
(2.72623,0)
(4.89367,0)
(0.88992,0) (-0.43968,0) (0.121341,0)
(0.13406,0) (-0.00214387,0) (-0.990971,0)
(-0.43597,0) (-0.898152,0) (-0.0570358,0)
val=
(0.257629,0)
(0.662467,0)
(-0.00267575,0)
matlab:
for k=1:n
[u,d] = eig(Tv(:,:,k))
end
%结果
u =
0.8306 -0.4169 -0.3692
0.4031 -0.0072 0.9151
-0.3841 -0.9089 0.1621
d =
0.0396 0 0
0 0.2238 0
0 0 5.8603
u =
0.8817 0.2040 0.4255
0.2308 -0.9729 -0.0119
-0.4115 -0.1087 0.9049
d =
1.3594 0 0
0 3.4103 0
0 0 4.2800
u =
-0.5269 0.7268 0.4406
0.8132 0.5819 0.0125
0.2473 -0.3649 0.8976
d =
0.3771 0 0
0 2.7262 0
0 0 4.8937
u =
-0.1213 -0.8899 0.4397
0.9910 -0.1341 0.0021
0.0570 0.4360 0.8982
d =
-0.0027 0 0
0 0.2576 0
0 0 0.6625
您的建议是什么?
推荐答案
我不明白您的问题,因为从您的结果来看,它们返回的结果都是一样的。回想一下,矩阵的特征分解不是完全唯一的:
- 特征值/向量可以任意重新排序
- 如果v是特征向量,则-v也是有效的特征向量
因为您的矩阵是对称的,所以您应该使用SelfAdjointEenerSolver将它们作为matlab自动排序。那么特征向量将只与它们的符号不同,但您将不得不接受这一点。
这篇关于Eigen图书馆中的Eigensolver的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
沃梦达教程
本文标题为:Eigen图书馆中的Eigensolver
基础教程推荐
猜你喜欢
- 设计字符串本地化的最佳方法 2022-01-01
- 什么是T&&(双与号)在 C++11 中是什么意思? 2022-11-04
- 如何定义双括号/双迭代器运算符,类似于向量的向量? 2022-01-01
- 调用std::Package_TASK::Get_Future()时可能出现争用情况 2022-12-17
- 您如何将 CreateThread 用于属于类成员的函数? 2021-01-01
- 运算符重载的基本规则和习语是什么? 2022-10-31
- C++ 标准:取消引用 NULL 指针以获取引用? 2021-01-01
- 如何在 C++ 中处理或避免堆栈溢出 2022-01-01
- C++ 程序在执行 std::string 分配时总是崩溃 2022-01-01
- C++,'if' 表达式中的变量声明 2021-01-01