How to use opencv copyTo() function?(如何使用 opencv copyTo() 函数?)
问题描述
我已阅读
请注意,在掩码数组中填充了一个额外的维度,以便可以广播.
I have read through the documentation for copyTo() but am still confused on how this function would be applied to the following code. This anwer states that we can use the copyTo function instead of 255-x. How would this function be applied in this case? I would appreciate a code snippet.
# Compute the gradient map of the image
def doLap(image):
# YOU SHOULD TUNE THESE VALUES TO SUIT YOUR NEEDS
kernel_size = 5 # Size of the laplacian window
blur_size = 5 # How big of a kernal to use for the gaussian blur
# Generally, keeping these two values the same or very close works well
# Also, odd numbers, please...
blurred = cv2.GaussianBlur(image, (blur_size,blur_size), 0)
return cv2.Laplacian(blurred, cv2.CV_64F, ksize=kernel_size)
#
# This routine finds the points of best focus in all images and produces a merged result...
#
def focus_stack(unimages):
images = align_images(unimages)
print "Computing the laplacian of the blurred images"
laps = []
for i in range(len(images)):
print "Lap {}".format(i)
laps.append(doLap(cv2.cvtColor(images[i],cv2.COLOR_BGR2GRAY)))
laps = np.asarray(laps)
print "Shape of array of laplacians = {}".format(laps.shape)
output = np.zeros(shape=images[0].shape, dtype=images[0].dtype)
abs_laps = np.absolute(laps)
maxima = abs_laps.max(axis=0)
bool_mask = abs_laps == maxima
mask = bool_mask.astype(np.uint8)
for i in range(0,len(images)):
output = cv2.bitwise_not(images[i],output, mask=mask[i])
return 255-output
Sorry that I kind of misled you there. Although it works nicely in C++, I cannot find the binding in Python. You can, however, use numpy.copyto function.
Here is a small demo that shows that both method (bitwise_not
and copyto
) produce identical result.
import cv2
import numpy as np
# Create two images
im1 = np.zeros((100, 100, 3), np.uint8)
im1[:] = (255, 0, 0)
im2 = np.zeros((100, 100, 3), np.uint8)
im2[:] = (0, 255, 0)
# Generate a random mask
ran = np.random.randint(0, 2, (100, 100), np.uint8)
# List of images and masks
images = [im1, im2]
mask = [ran, 1-ran]
not_output = np.zeros((100, 100, 3), np.uint8)
copy_output = np.zeros((100, 100, 3), np.uint8)
for i in range(0, len(images)):
# Using the 'NOT' way
not_output = cv2.bitwise_not(images[i], not_output, mask=mask[i])
# Using the copyto way
np.copyto(copy_output, images[i], where=mask[i][:, :, None].astype(bool))
cv2.imwrite('not.png', 255 - not_output)
cv2.imwrite('copy.png', copy_output)
Note that an extra dimension was padded to the mask array so that it can be broadcasted.
这篇关于如何使用 opencv copyTo() 函数?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:如何使用 opencv copyTo() 函数?


基础教程推荐
- PermissionError: pip 从 8.1.1 升级到 8.1.2 2022-01-01
- Plotly:如何设置绘图图形的样式,使其不显示缺失日期的间隙? 2022-01-01
- PANDA VALUE_COUNTS包含GROUP BY之前的所有值 2022-01-01
- 包装空间模型 2022-01-01
- 求两个直方图的卷积 2022-01-01
- 使用大型矩阵时禁止 Pycharm 输出中的自动换行符 2022-01-01
- 无法导入 Pytorch [WinError 126] 找不到指定的模块 2022-01-01
- 在同一图形上绘制Bokeh的烛台和音量条 2022-01-01
- 在Python中从Azure BLOB存储中读取文件 2022-01-01
- 修改列表中的数据帧不起作用 2022-01-01