合并具有多索引的两个数据帧

Merge two dataframes with multi-index(合并具有多索引的两个数据帧)

本文介绍了合并具有多索引的两个数据帧的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我已经看过几篇关于这个问题的帖子,但是我不能理解Merge、Join和Concat将如何处理这个问题。如何合并两个数据帧以查找匹配的索引?

在:

import pandas as pd
import numpy as np
row_x1 = ['a1','b1','c1']
row_x2 = ['a2','b2','c2']
row_x3 = ['a3','b3','c3']
row_x4 = ['a4','b4','c4']
index_arrays = [np.array(['first', 'first', 'second', 'second']), np.array(['one','two','one','two'])]
df1 = pd.DataFrame([row_x1,row_x2,row_x3,row_x4], columns=list('ABC'), index=index_arrays)
print(df1)

输出:

             A   B   C
first  one  a1  b1  c1
       two  a2  b2  c2
second one  a3  b3  c3
       two  a4  b4  c4

在:

row_y1 = ['d1','e1','f1']
row_y2 = ['d2','e2','f2']
df2 = pd.DataFrame([row_y1,row_y2], columns=list('DEF'), index=['first','second'])
print(df2)

输出

         D   E   F
first   d1  e1  f1
second  d2  e2  f2

换句话说,如何将它们合并以实现DF3(如下所示)?

row_x1 = ['a1','b1','c1']
row_x2 = ['a2','b2','c2']
row_x3 = ['a3','b3','c3']
row_x4 = ['a4','b4','c4']
row_y1 = ['d1','e1','f1']
row_y2 = ['d2','e2','f2']

row_z1 = row_x1 + row_y1
row_z2 = row_x2 + row_y1
row_z3 = row_x3 + row_y2
row_z4 = row_x4 + row_y2

df3 = pd.DataFrame([row_z1,row_z2,row_z3,row_z4], columns=list('ABCDEF'), index=index_arrays)
print(df3)

输出

             A   B   C   D   E   F
first  one  a1  b1  c1  d1  e1  f1
       two  a2  b2  c2  d1  e1  f1
second one  a3  b3  c3  d2  e2  f2
       two  a4  b4  c4  d2  e2  f2

推荐答案

选项1
使用pd.DataFrame.reindex+pd.DataFrame.join
reindex有一个方便的level参数,允许您在不存在的索引级别上展开。

df1.join(df2.reindex(df1.index, level=0))

             A   B   C   D   E   F
first  one  a1  b1  c1  d1  e1  f1
       two  a2  b2  c2  d1  e1  f1
second one  a3  b3  c3  d2  e2  f2
       two  a4  b4  c4  d2  e2  f2

选项2
您可以重命名您的轴,join将起作用

df1.rename_axis(['a', 'b']).join(df2.rename_axis('a'))

             A   B   C   D   E   F
a      b                          
first  one  a1  b1  c1  d1  e1  f1
       two  a2  b2  c2  d1  e1  f1
second one  a3  b3  c3  d2  e2  f2
       two  a4  b4  c4  d2  e2  f2

您可以继续rename_axis以获得所需的结果

df1.rename_axis(['a', 'b']).join(df2.rename_axis('a')).rename_axis([None, None])

             A   B   C   D   E   F
first  one  a1  b1  c1  d1  e1  f1
       two  a2  b2  c2  d1  e1  f1
second one  a3  b3  c3  d2  e2  f2
       two  a4  b4  c4  d2  e2  f2

这篇关于合并具有多索引的两个数据帧的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本文标题为:合并具有多索引的两个数据帧

基础教程推荐