How to create a stacked bar plot from a wide dataframe(如何从宽数据帧创建堆叠条形图)
本文介绍了如何从宽数据帧创建堆叠条形图的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
您能帮我找出这个代码有什么问题吗?我收到相同的错误消息&&ufunc‘add’不包含具有签名匹配类型的循环(dtype(‘<;U32’)、dtype(‘<;U32’))->;dtype(‘<;U32’)&qot;
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
data = {'Information Technology' : [217.88, 581.07, 247.28, 200.17], 'Industrials' : [142.33, 324.59, 159.60, 163.68], 'Health Care' : [126.63, 258.50, 135.77, 134.90], 'Communication' : [142.33, 324.59, 159.60, 163.68], 'Financials' : [212.54, 330.87, 165.56, 203.98], 'Consumer Staples' : [561.36, 390.29, 117.85, 93.67], 'Seniority' : [1.0, 2.0, 3.0, 4.0]}
frame = pd.DataFrame(data)
Information Technology Industrials Health Care Communication Financials Consumer Staples Seniority
0 217.88 142.33 126.63 142.33 212.54 561.36 1.0
1 581.07 324.59 258.50 324.59 330.87 390.29 2.0
2 247.28 159.60 135.77 159.60 165.56 117.85 3.0
3 200.17 163.68 134.90 163.68 203.98 93.67 4.0
frame.set_index('Seniority')
legend = ['Information Technology','Industrials','Health Care', 'Communication','Financials', 'Consumer Staples']
Information_Technology = frame.iloc[:,0]
Industrials = frame.iloc[:,1]
Health_Care = frame.iloc[:,2]
Communication = frame.iloc[:,3]
Financials = frame.iloc[:,4]
Consumer_Staples = frame.iloc[:,5]
Seniority = frame.iloc[:,6]
graphInformationTechnology = plt.bar(Seniority, Information_Technology ,0.35 ,color = '#FF0000' ,label = "Information Technology")
graphIndustrials = plt.bar(Seniority, Industrials, 0.35 , bottom = Information_Technology ,color = '#ffff00' ,label ="Industrials")
graphHealthCare = plt.bar(Seniority,Health_Care, 0.35 , bottom = Information_Technology + Health_Care ,color = '#0000FF' ,label ="Health Care")
graphCommunication = plt.bar(Seniority,Health_Care, 0.35 , bottom = Information_Technology + Health_Care + Industrials ,color = '#0000FF' ,label ="Communication")
graphFinancials = plt.bar(Seniority,Health_Care, 0.35 , bottom = Information_Technology + Health_Care + Industrials + Financials ,color = '#0000FF' ,label ="Financials")
graphconsumerstaples = plt.bar(Seniority,Health_Care, 0.35 , bottom = Information_Technology + Health_Care + Financials + Financials + 'consumer staples' ,color = '#0000FF' ,label ="Consumer Staples")
for ticklabel in plt.gca().get_xticklabels():
ticklabel.set_color('#CC3300')
for ticklabel in plt.gca().get_yticklabels():
ticklabel.set_color('#9932CC')
plt.xlabel('Seniority')
plt.ylabel('Job Count')
plt.legend(legend , loc=(1.0,0))
plt.title('Seniority and Job Count', size=20, fontweight="bold")
plt.show()
错误
---------------------------------------------------------------------------
UFuncTypeError Traceback (most recent call last)
~AppDataLocalTemp/ipykernel_22704/1999813345.py in <module>
19 graphCommunication = plt.bar(Seniority,Health_Care, 0.35 , bottom = Information_Technology + Health_Care + Industrials ,color = '#0000FF' ,label ="Communication")
20 graphFinancials = plt.bar(Seniority,Health_Care, 0.35 , bottom = Information_Technology + Health_Care + Industrials + Financials ,color = '#0000FF' ,label ="Financials")
---> 21 graphconsumerstaples = plt.bar(Seniority,Health_Care, 0.35 , bottom = Information_Technology + Health_Care + Financials + Financials + 'consumer staples' ,color = '#0000FF' ,label ="Consumer Staples")
22
23
D:anaconda3envspy39libsite-packagespandascoreopscommon.py in new_method(self, other)
67 other = item_from_zerodim(other)
68
---> 69 return method(self, other)
70
71 return new_method
D:anaconda3envspy39libsite-packagespandascorearraylike.py in __add__(self, other)
90 @unpack_zerodim_and_defer("__add__")
91 def __add__(self, other):
---> 92 return self._arith_method(other, operator.add)
93
94 @unpack_zerodim_and_defer("__radd__")
D:anaconda3envspy39libsite-packagespandascoreseries.py in _arith_method(self, other, op)
5524
5525 with np.errstate(all="ignore"):
-> 5526 result = ops.arithmetic_op(lvalues, rvalues, op)
5527
5528 return self._construct_result(result, name=res_name)
D:anaconda3envspy39libsite-packagespandascoreopsarray_ops.py in arithmetic_op(left, right, op)
222 _bool_arith_check(op, left, right)
223
--> 224 res_values = _na_arithmetic_op(left, right, op)
225
226 return res_values
D:anaconda3envspy39libsite-packagespandascoreopsarray_ops.py in _na_arithmetic_op(left, right, op, is_cmp)
164
165 try:
--> 166 result = func(left, right)
167 except TypeError:
168 if is_object_dtype(left) or is_object_dtype(right) and not is_cmp:
UFuncTypeError: ufunc 'add' did not contain a loop with signature matching types (dtype('float64'), dtype('<U16')) -> None
推荐答案
pandas 堆叠条形图-正确方式
- 将
pandas.DataFrame.plot
与kind='bar'
和stacked=True
一起使用 - 这将实现从26行代码减少到9行
- 对于自定义颜色,请为每个部分指定颜色列表,并在
ax = frame.plot(..., color=color)
内部添加color=color
。color = ['red', 'yellow', 'blue', 'orange', 'green', 'purple']
- 测试于
python 3.8.12
、pandas 1.3.4
、matplotlib 3.4.3
import pandas as pd
import matplotlib.pyplot as plt
# create the DataFrame using data from the OP
frame = pd.DataFrame(data)
frame.set_index('Seniority', inplace=True)
ax = frame.plot(kind='bar', stacked='True', figsize=(8, 6), rot=0, ylabel='Job Count')
ax.set_title('Seniority and Job Count', size=20, fontweight="bold")
ax.legend(loc=(1.01, 0))
ax.tick_params(axis='x', colors='red', which='both')
ax.tick_params(axis='y', colors='purple', which='both')
plt.show()
修复现有代码
- 绘图创建有许多问题
- 为许多地块指定的
y
不正确 bottom
没有根据上一节的y
正确创建Financials + 'consumer staples'
是导致错误的直接原因。'Consumer_Staples'
不应添加到graphconsumerstaples
绘图的bottom
。
- 为许多地块指定的
# change setting the index because it's not assigned in the OP
frame.set_index('Seniority', inplace=True)
# fix the plotting section and everything else works fine
graphInformationTechnology = plt.bar(Seniority, Information_Technology ,0.35 ,color = '#FF0000' ,label = "Information Technology")
graphIndustrials = plt.bar(Seniority, Industrials, 0.35 , bottom = Information_Technology ,color = '#ffff00' ,label ="Industrials")
graphHealthCare = plt.bar(Seniority,Health_Care, 0.35 , bottom = Information_Technology + Industrials ,color = '#0000FF' ,label ="Health Care")
graphCommunication = plt.bar(Seniority, Communication, 0.35 , bottom = Information_Technology + Industrials + Health_Care ,color = 'orange' ,label ="Communication")
graphFinancials = plt.bar(Seniority, Financials, 0.35 , bottom = Information_Technology + Industrials + Health_Care + Communication ,color = 'green' ,label ="Financials")
graphconsumerstaples = plt.bar(Seniority, Consumer_Staples, 0.35 , bottom = Information_Technology + Industrials + Health_Care + Communication + Financials ,color = 'purple' ,label ="Consumer Staples")
这篇关于如何从宽数据帧创建堆叠条形图的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
沃梦达教程
本文标题为:如何从宽数据帧创建堆叠条形图
基础教程推荐
猜你喜欢
- 如何在Python中绘制多元函数? 2022-01-01
- 哪些 Python 包提供独立的事件系统? 2022-01-01
- 使用Python匹配Stata加权xtil命令的确定方法? 2022-01-01
- 如何在 Python 中检测文件是否为二进制(非文本)文 2022-01-01
- 使 Python 脚本在 Windows 上运行而不指定“.py";延期 2022-01-01
- 将 YAML 文件转换为 python dict 2022-01-01
- Python 的 List 是如何实现的? 2022-01-01
- 症状类型错误:无法确定关系的真值 2022-01-01
- 使用 Google App Engine (Python) 将文件上传到 Google Cloud Storage 2022-01-01
- 合并具有多索引的两个数据帧 2022-01-01