Python Pandas Match Vlookup columns based on header values(Python pandas 根据标题值匹配VLOOKUP列)
本文介绍了Python pandas 根据标题值匹配VLOOKUP列的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有以下数据帧DF:
Customer_ID | 2015 | 2016 |2017 | Year_joined_mailing
ABC 5 6 10 2015
BCD 6 7 3 2016
DEF 10 4 5 2017
GHI 8 7 10 2016
我要查找客户在加入邮件列表时的价值,并将其保存在新列中。
输出将为:
Customer_ID | 2015 | 2016 |2017 | Year_joined_mailing | Purchases_1st_year
ABC 5 6 10 2015 5
BCD 6 7 3 2016 7
DEF 10 4 5 2017 5
GHI 8 9 10 2016 9
我为python中的Match VLOOKUP找到了一些解决方案,但没有一个可以使用其他列的标题。
推荐答案
弃用通知:
lookup
为deprecated in v1.2.0
使用pd.DataFrame.lookup
请记住,我假设Customer_ID
是索引。
df.lookup(df.index, df.Year_joined_mailing)
array([5, 7, 5, 7])
df.assign(
Purchases_1st_year=df.lookup(df.index, df.Year_joined_mailing)
)
2015 2016 2017 Year_joined_mailing Purchases_1st_year
Customer_ID
ABC 5 6 10 2015 5
BCD 6 7 3 2016 7
DEF 10 4 5 2017 5
GHI 8 7 10 2016 7
但是,在比较列名中可能的字符串和第一年列中的整数时必须小心.
确保遵守类型比较的核心选项。
df.assign(
Purchases_1st_year=df.rename(columns=str).lookup(
df.index, df.Year_joined_mailing.astype(str)
)
)
2015 2016 2017 Year_joined_mailing Purchases_1st_year
Customer_ID
ABC 5 6 10 2015 5
BCD 6 7 3 2016 7
DEF 10 4 5 2017 5
GHI 8 7 10 2016 7
这篇关于Python pandas 根据标题值匹配VLOOKUP列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
沃梦达教程
本文标题为:Python pandas 根据标题值匹配VLOOKUP列
基础教程推荐
猜你喜欢
- 合并具有多索引的两个数据帧 2022-01-01
- 使用Python匹配Stata加权xtil命令的确定方法? 2022-01-01
- 哪些 Python 包提供独立的事件系统? 2022-01-01
- 症状类型错误:无法确定关系的真值 2022-01-01
- 使 Python 脚本在 Windows 上运行而不指定“.py";延期 2022-01-01
- Python 的 List 是如何实现的? 2022-01-01
- 使用 Google App Engine (Python) 将文件上传到 Google Cloud Storage 2022-01-01
- 如何在Python中绘制多元函数? 2022-01-01
- 将 YAML 文件转换为 python dict 2022-01-01
- 如何在 Python 中检测文件是否为二进制(非文本)文 2022-01-01