如何在 for 循环内的 Plotly 中注释子图

2023-09-29Python开发问题
15

本文介绍了如何在 for 循环内的 Plotly 中注释子图的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我正在尝试在 for 循环中注释我的子图.每个子图将在图上打印 RMS 值.我尝试通过以下方式做到这一点:

I am trying to annotate my subplots inside a for loop. Each subplot will have RMS value printed on the plot. I tried to do it the following way:

from plotly import tools
figg = tools.make_subplots(rows=4, cols=1)

fake_date = {"X":   np.arange(1, 101, 0.5), "Y": np.sin(x), "Z": [x + 1 for x in range(10)] * 20}
fake_date = pd.DataFrame(fake_date)
fake_date.sort_values("Z")

unique_ids = fake_date['Z'].unique()
train_id, test_id = np.split(np.random.permutation(unique_ids), [int(.6 * len(unique_ids))])


for i, j in enumerate(test_id):

    x_test = fake_date[fake_date['Z'].isin([test_id[i]])] 
    y_test = fake_date[fake_date['Z'].isin([test_id[i]])]


    # Evaluate 
    rms_test = 0.04
    r_test = 0.9



    Real = {'type' : 'scatter',
                     'x' : x_test.X,
                     'y' : x_test.Y,
                "mode" : 'lines+markers', 
                "name" : 'Real'}




    figg.append_trace(Real, i+1, 1)


figg['layout'].update( annotations=[dict(x = 10,y = 0.2,  text= rms_test, xref= "x1",yref="y1")]  )
figg['layout'].update(height=1800, width=600, title="Testing")
pyo.iplot(figg)

这不起作用,尽管给出的答案 这里 似乎对其他人有用.谁能指出我做错了什么?我为重现性生成了假日期

This does not work, although the answer given here seems to work for others. Can anyone point out what wrong am I doing? I generated fake date for reproducibility

推荐答案

我不确定 RMS 值的准确位置,但下面是一个示例代码,可以帮助您实现您想要的.

I am not sure where to exactly place the RMS value, but below is a sample code which will help you achieve what you want.

我们创建一个数组annotation_arr,我们使用for循环在其中存储注释.

We create an array annotation_arr where we store the annotations using the for loop.

我们需要为每个单独的轴设置 xvalyval.请记住,第一个轴是 x,第二个是 x2 所以,我为此写了一个三元条件,请查看下面的代码,如果有的话请告诉我问题!

We need to set the xval and yval for each of the individual axes. Remember, first axis will be x, second will be x2 so, I have written a ternary condition for that, please checkout the below code and let me know if there is any issues!

import plotly.graph_objs as go
from plotly.offline import download_plotlyjs,init_notebook_mode,plot,iplot
from plotly import tools
import numpy as np
import pandas as pd
init_notebook_mode(connected=True)
rows = 4
figg = tools.make_subplots(rows=rows, cols=1)

fake_date = {"X":   np.arange(0, 100, 0.5), "Y": [np.sin(x) for x in range(200)], "Z": [x + 1 for x in range(10)] * 20}
fake_date = pd.DataFrame(fake_date)
fake_date.sort_values("Z")

unique_ids = fake_date['Z'].unique()
train_id, test_id = np.split(np.random.permutation(unique_ids), [int(.6 * len(unique_ids))])
top = 0
annotation_arr = []
for i, j in enumerate(test_id):

    x_test = fake_date[fake_date['Z'].isin([test_id[i]])] 
    y_test = fake_date[fake_date['Z'].isin([test_id[i]])]


    # Evaluate 
    rms_test = 0.04
    r_test = 0.9



    Real = {'type' : 'scatter',
                     'x' : x_test.X,
                     'y' : x_test.Y,
                "mode" : 'lines+markers', 
                "name" : 'Real'}


    top = top + 1/rows
    i_val = "" if i == 0 else i + 1
    annotation_arr.append(dict(x = r_test,y = top,  text= rms_test, xref= "x"+str(i_val),yref="y"+str(i_val)))
    figg.append_trace(Real, i+1, 1)


figg['layout'].update( annotations=annotation_arr  )
figg['layout'].update(height=1800, width=600, title="Testing")
iplot(figg)

这篇关于如何在 for 循环内的 Plotly 中注释子图的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

The End

相关推荐

在xarray中按单个维度的多个坐标分组
groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)...
2024-08-22 Python开发问题
15

Pandas中的GROUP BY AND SUM不丢失列
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)...
2024-08-22 Python开发问题
17

pandas 有从特定日期开始的按月分组的方式吗?
Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)...
2024-08-22 Python开发问题
10

GROUP BY+新列+基于条件的前一行抓取值
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)...
2024-08-22 Python开发问题
18

PANDA中的Groupby算法和插值算法
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)...
2024-08-22 Python开发问题
11

PANAS-基于列对行进行分组,并将NaN替换为非空值
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)...
2024-08-22 Python开发问题
10