Highlight minimum values every row using seaborn heatmap(使用海运热图高亮显示每行的最小值)
本文介绍了使用海运热图高亮显示每行的最小值的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我正在尝试使用相同的颜色突出显示每行的最小值:
例如,第一行的最小值为0.3。我想用蓝色突出它。同样,对于第二行,为0.042,依此类推。
这是代码。
import numpy as np
import seaborn as sns
import matplotlib.pylab as plt
from matplotlib.patches import Rectangle
Pe = np.random.rand(5,5)
annot=True
fig, ax1 = plt.subplots(1)
ax1 = sns.heatmap(Pe, linewidth=0.5,ax=ax1,annot=annot)
推荐答案
您可以遍历各行,找到最小值的索引,然后在那里绘制一个矩形。设置clip_on=False
可防止矩形被边框剪裁。
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
Pe = np.random.rand(5, 5)
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(10, 4))
sns.set_style('white')
sns.heatmap(Pe, linewidth=0.5, annot=True, ax=ax1)
for ind, row in enumerate(Pe):
min_col = np.argmin(row)
ax1.add_patch(plt.Rectangle((min_col, ind), 1, 1, fc='none', ec='skyblue', lw=5, clip_on=False))
sns.heatmap(Pe, mask=Pe != Pe.min(axis=1, keepdims=True), annot=True, lw=2, linecolor='black', clip_on=False,
cmap=ListedColormap(['skyblue']), cbar=False, ax=ax2)
plt.tight_layout()
plt.show()
ps:要创建动画,Celluloid library是一个轻量级选项:
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import seaborn as sns
import numpy as np
from celluloid import Camera
Pe = np.random.rand(5, 5)
fig, ax1 = plt.subplots()
camera = Camera(fig)
sns.set_style('white')
row_array = np.arange(Pe.shape[0]).reshape(-1, 1)
for row in range(Pe.shape[0]):
sns.heatmap(Pe, mask=(Pe != Pe.min(axis=1, keepdims=True)) | (row < row_array),
annot=True, lw=2, linecolor='black', clip_on=False,
cmap=ListedColormap(['skyblue']), cbar=False, ax=ax1)
camera.snap()
animation = camera.animate(interval=800)
animation.save('animation.gif')
plt.show()
对于更复杂的动画,可以考虑matplotlib的animation API。
这篇关于使用海运热图高亮显示每行的最小值的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
沃梦达教程
本文标题为:使用海运热图高亮显示每行的最小值
基础教程推荐
猜你喜欢
- 如何在 Python 中检测文件是否为二进制(非文本)文 2022-01-01
- 如何在Python中绘制多元函数? 2022-01-01
- 哪些 Python 包提供独立的事件系统? 2022-01-01
- Python 的 List 是如何实现的? 2022-01-01
- 症状类型错误:无法确定关系的真值 2022-01-01
- 将 YAML 文件转换为 python dict 2022-01-01
- 使用 Google App Engine (Python) 将文件上传到 Google Cloud Storage 2022-01-01
- 使用Python匹配Stata加权xtil命令的确定方法? 2022-01-01
- 使 Python 脚本在 Windows 上运行而不指定“.py";延期 2022-01-01
- 合并具有多索引的两个数据帧 2022-01-01