Plotly clustered heatmap (with dendrogram)/Python(插图聚类式热图(带有树状图)/Python)
本文介绍了插图聚类式热图(带有树状图)/Python的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我正在尝试使用Ploly在Python语言中创建一个集群热图(使用树状图)。他们在网站上做的这个没有很好的伸缩性,我已经找到了各种解决方案,但大多数都是用R或JavaScript编写的。我正在尝试创建一个热图,只从热图的左侧创建一个树状图,显示y轴上的集群(从层次集群)。一个非常好看的例子是这个:https://chart-studio.plotly.com/~jackp/6748。我的目的是创建这样的东西,但只使用左侧的树状图。如果有人能用Python语言实现这样的东西,我将非常感激!
让数据X = np.random.randint(0, 10, size=(120, 10))
推荐答案
以下建议使用Dendrograms in Python和chart-studio.plotly.com/~jackp中的元素。此特定绘图使用您的数据X = np.random.randint(0, 10, size=(120, 10))
。在我看来,这些相互关联的方法有一个共同点,那就是数据集和数据处理程序有点杂乱无章。因此,我决定用df = pd.DataFrame(X)
在 pandas 数据框上构建下面的图,希望能让一切变得更清楚
绘图
完整代码
import plotly.graph_objects as go
import plotly.figure_factory as ff
import numpy as np
import pandas as pd
from scipy.spatial.distance import pdist, squareform
import random
import string
X = np.random.randint(0, 10, size=(120, 10))
df = pd.DataFrame(X)
# Initialize figure by creating upper dendrogram
fig = ff.create_dendrogram(df.values, orientation='bottom')
fig.for_each_trace(lambda trace: trace.update(visible=False))
for i in range(len(fig['data'])):
fig['data'][i]['yaxis'] = 'y2'
# Create Side Dendrogram
# dendro_side = ff.create_dendrogram(X, orientation='right', labels = labels)
dendro_side = ff.create_dendrogram(X, orientation='right')
for i in range(len(dendro_side['data'])):
dendro_side['data'][i]['xaxis'] = 'x2'
# Add Side Dendrogram Data to Figure
for data in dendro_side['data']:
fig.add_trace(data)
# Create Heatmap
dendro_leaves = dendro_side['layout']['yaxis']['ticktext']
dendro_leaves = list(map(int, dendro_leaves))
data_dist = pdist(df.values)
heat_data = squareform(data_dist)
heat_data = heat_data[dendro_leaves,:]
heat_data = heat_data[:,dendro_leaves]
heatmap = [
go.Heatmap(
x = dendro_leaves,
y = dendro_leaves,
z = heat_data,
colorscale = 'Blues'
)
]
heatmap[0]['x'] = fig['layout']['xaxis']['tickvals']
heatmap[0]['y'] = dendro_side['layout']['yaxis']['tickvals']
# Add Heatmap Data to Figure
for data in heatmap:
fig.add_trace(data)
# Edit Layout
fig.update_layout({'width':800, 'height':800,
'showlegend':False, 'hovermode': 'closest',
})
# Edit xaxis
fig.update_layout(xaxis={'domain': [.15, 1],
'mirror': False,
'showgrid': False,
'showline': False,
'zeroline': False,
'ticks':""})
# Edit xaxis2
fig.update_layout(xaxis2={'domain': [0, .15],
'mirror': False,
'showgrid': False,
'showline': False,
'zeroline': False,
'showticklabels': False,
'ticks':""})
# Edit yaxis
fig.update_layout(yaxis={'domain': [0, 1],
'mirror': False,
'showgrid': False,
'showline': False,
'zeroline': False,
'showticklabels': False,
'ticks': ""
})
# # Edit yaxis2
fig.update_layout(yaxis2={'domain':[.825, .975],
'mirror': False,
'showgrid': False,
'showline': False,
'zeroline': False,
'showticklabels': False,
'ticks':""})
fig.update_layout(paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="rgba(0,0,0,0)",
xaxis_tickfont = dict(color = 'rgba(0,0,0,0)'))
fig.show()
这篇关于插图聚类式热图(带有树状图)/Python的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
沃梦达教程
本文标题为:插图聚类式热图(带有树状图)/Python
基础教程推荐
猜你喜欢
- 将 YAML 文件转换为 python dict 2022-01-01
- 使 Python 脚本在 Windows 上运行而不指定“.py";延期 2022-01-01
- 如何在Python中绘制多元函数? 2022-01-01
- 哪些 Python 包提供独立的事件系统? 2022-01-01
- 使用 Google App Engine (Python) 将文件上传到 Google Cloud Storage 2022-01-01
- 症状类型错误:无法确定关系的真值 2022-01-01
- 使用Python匹配Stata加权xtil命令的确定方法? 2022-01-01
- Python 的 List 是如何实现的? 2022-01-01
- 合并具有多索引的两个数据帧 2022-01-01
- 如何在 Python 中检测文件是否为二进制(非文本)文 2022-01-01