Reconstructing a matrix from an SVD in python 3(在Python3中从奇异值分解重构矩阵)
本文介绍了在Python3中从奇异值分解重构矩阵的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
好,基本上我的问题是,我有一个矩阵,我把它奇异值分解,然后把它放在变量u,s和v中,我对s矩阵做了一些修改,使它成为对角线,还修改了一些数字。现在我基本上是试着把它重建成一个正则矩阵,从这3个矩阵恢复到原来的矩阵。有谁知道有什么函数可以做到这一点吗?我似乎在NumPy中找不到任何这样的例子。推荐答案
唯一稍微有点棘手的是s
如果您已经安装了scipy
它有scipy.linalg.diagsvd
可以为您完成此操作:
>>> import numpy as np
>>> import scipy.linalg as la
>>>
>>> rng = np.random.default_rng()
>>> A = rng.uniform(-1,1,(4,3))
>>> u,s,v = np.linalg.svd(A)
>>>
>>> B = u@la.diagsvd(s,*A.shape)@v
>>>
>>> np.allclose(A,B)
True
这篇关于在Python3中从奇异值分解重构矩阵的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
沃梦达教程
本文标题为:在Python3中从奇异值分解重构矩阵
基础教程推荐
猜你喜欢
- 使用 Google App Engine (Python) 将文件上传到 Google Cloud Storage 2022-01-01
- Python 的 List 是如何实现的? 2022-01-01
- 使 Python 脚本在 Windows 上运行而不指定“.py";延期 2022-01-01
- 如何在 Python 中检测文件是否为二进制(非文本)文 2022-01-01
- 合并具有多索引的两个数据帧 2022-01-01
- 使用Python匹配Stata加权xtil命令的确定方法? 2022-01-01
- 症状类型错误:无法确定关系的真值 2022-01-01
- 如何在Python中绘制多元函数? 2022-01-01
- 将 YAML 文件转换为 python dict 2022-01-01
- 哪些 Python 包提供独立的事件系统? 2022-01-01